九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
津田 みどり(つだ みどり) データ更新日:2024.04.10

教授 /  農学研究院 資源生物科学部門 農業生物資源学


主な研究テーマ
ナノ農薬による害虫防除
キーワード:ナノ技術、被害植物の揮発性物質、ナノシリカ
2018.06.
機械学習による任意体勢の昆虫の雌雄判別と種判別
キーワード:人工知能、深層学習
2017.08.
寄主シフトに関する生態的要因と遺伝子発現
キーワード:寄主植物、植食性昆虫、寄主シフト、RNA-seq
2012.04.
集団内多型の進化的維持機構
キーワード:触角、性的対立
2010.04.
植物ー寄主ー寄生蜂系存続における遺伝的多様性の効果
キーワード:遺伝的多様性、種多様性
1995.04.
地球温暖化やCO2濃度上昇の寄生・捕食系に及ぼす効果
キーワード:気温、植物の豊凶、寄主ー寄生蜂、被食者ー捕食者
1991.04.
マメーマメゾウムシー寄生蜂系の多様性の決定要因
キーワード:種数、進化、植物ー植食者、寄主ー捕食寄生者
1995.01.
害虫および天敵個体群における遺伝的多様性と寄主植物の関係
キーワード:地理的集団、分子マーカー、人間活動による移動分散
1995.04.
個体群動態からの非線形メカニズムの検出
キーワード:カオス、トランジェント、密度依存性、統計手法
1995.01.
従事しているプロジェクト研究
ナノ農薬による害虫防除
2018.06.
機械学習による昆虫画像からの種および性別の自動判別
2017.04.
種子食昆虫の食性進化
1995.04, 九大・東大(日本).
寄主-寄生蜂系、貯穀害虫集団における群集動態・進化動態・行動・遺伝子
1995.04, 九大(日本).
研究業績
主要著書
主要原著論文
1. Gao S, Tuda M, Silica and selenium nanoparticles attract or repel scale insects by altering physicochemical leaf traits, Plants, 13, 952, 2024.03, [URL].
2. Miksanek JR, Adarkwah C, Tuda M, Low concentrations of selenium nanoparticles enhance the performance of a generalist parasitoid and its host, with no net effect on host suppression, Pest Management Science, doi: 10.1002/ps.7907, 80, 1812–1820, 2024.03.
3. San PP, Zhang YZ, Helmy EAM, Adarkwah C, Tuda M, Sex-dependent effects of biosynthesized nanoparticles on stored bean pests and their non-target parasitoid, Crop Protection, 173, 106352, 2023.07.
4. Iwase S, Tuda M, Sugawara Y, Fukuda K, Miksanek JR, Watanabe M, Negative phototaxis of jumping cocooned parasitoid wasp larvae against short wavelengths and physicochemical properties of the cocoon shell, Scientific Reports, 13, 9562, 2023.06.
5. Helmy EAM, San PP, Zhang YZ, Adarkwah C, Tuda M, Entomotoxic efficacy of fungus-synthesized nanoparticles against immature stages of stored bean pests, Scientific Reports, 10.1038/s41598-023-35697-1, 13, 8508, 2023.05.
6. Miksanek JR, Tuda M, Endosymbiont-mediated resistance to entomotoxic nanoparticles and sex-specific responses in a seed beetle, Journal of Pest Science, 96, 1257-1270, 2023.06, Bacterial symbionts can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes. Although Wolbachia, a common endosymbiont in arthropods, typically does not influence insecticide resistance, there are cases of increased or decreased susceptibility. Due to the restrictions of applying conventional insecticides in a stored product setting, studies on alternative control methods are needed, including those on entomotoxic nanoparticles and the potential for resistance. For pests of stored beans, selenium nanoparticles (SeNPs) are relatively innocuous to the azuki bean beetle, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae). Here, we hypothesized that this response is mediated by Wolbachia, and we tested this using an isofemale line of C. chinensis (infected or uninfected with Wolbachia). Our results showed that the lifespan of Wolbachia-infected females was not affected by SeNPs, but increasing concentrations of SeNPs still had a negative effect on fecundity; in uninfected females, increasing concentrations of SeNPs significantly decreased both lifespan and fecundity. However, in males, SeNPs enhanced lifespan and decreased the incidence of sexual harassment behavior regardless of infection status (for uninfected males, the duration of harassment behavior also decreased). In the presence of males, 72-h female reproduction increased independent of infection status or SeNP treatment, but egg hatchability was reduced by male presence and SeNPs. This study documents a valuable example of symbiont-mediated resistance to entomotoxic nanoparticles..
7. Zhang YZ, Jin Z, Miksanek JR, Tuda M, Impact of a nonnative parasitoid species on intraspecific interference and offspring sex ratio, Scientific Reports, https://doi.org/10.1038/s41598-021-02713-1, 11, 23215, 2021.12.
8. Thabet AF, Boraei HA, Galal OA, El-Samahy MFM, Mousa KM, Zhang YZ, Tuda M, Helmy EA, Wen J, Nozaki T, Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators., Scientific Reports, https://doi.org/10.1038/s41598-021-93518-9, 11, 14484, 2021.07, The agricultural use of silica (SiO2) nanoparticles (NPs) has the potential to control insect pests while the safety and tritrophic effects on plants and beneficial natural enemies remains unknown. Here, we evaluate the effects of silica NPs on insect pests with different feeding niches, natural enemies, and a plant. Silica NPs were applied at different concentrations (75–425 mg/L) on field-cultivated faba bean and soybean for two growing seasons. The faba bean pests, the cowpea aphid Aphis craccivora and the American serpentine leafminer Liriomyza trifolii, and the soybean pest, the cotton leafworm Spodoptera littoralis, were monitored along with their associated predators. Additional laboratory experiments were performed to test the effects of silica NPs on the growth of faba bean seedlings and to determine whether the rove beetle Paederus fuscipes is attracted to cotton leafworm-infested soybean treated with silica NPs. In the field experiments, silica NPs reduced the populations of all three insect pests and their associated predators, including rove beetles, as the concentration of silica NPs increased. In soybean fields, however, the total number of predators initially increased after applying the lowest concentration. An olfactometer-based choice test found that rove beetles were more likely to move towards an herbivore-infested plant treated with silica NPs than to a water-treated control, suggesting that silica NPs enhance the attraction of natural enemies via herbivore-induced plant volatiles. In the laboratory, while silica NPs inhibited the development of faba bean roots at 400 mg/L, they did not affect germination and shoot length..
9. Tuda M, Iwase S, Kebe K, Haran J, Skuhrovec J, Sanaei E, Tsuji N, Podlussany A, Merkl O, El-Heneidy AH, Morimoto K, Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia, Scientific Reports, https://doi.org/10.1038/s41598-021-88770-y, 11, 9664, 2021.05, The alfalfa weevil Hypera postica, native to the Western Palearctic, is an invasive legume pest with two divergent mitochondrial clades in its invading regions, the Western clade and the Eastern/Egyptian clade. However, knowledge regarding the native populations is limited. The Western clade is infected with the endosymbiotic bacteria Wolbachia that cause cytoplasmic incompatibility in host weevils. Our aim was to elucidate the spatial genetic structure of this insect and the effect of Wolbachia on its population diversity. We analyzed two mitochondrial and two nuclear genes of the weevil from its native ranges. The Western clade was distributed in western/central Europe, whereas the Eastern/Egyptian clade was distributed from the Mediterranean basin to central Asia. Intermediate mitotypes were found from the Balkans to central Asia. Most Western clade individuals in western Europe were infected with an identical Wolbachia strain. Mitochondrial genetic diversity of the infected individuals was minimal. The infected clades demonstrated a higher nonsynonymous/synonymous substitution rate ratio than the uninfected clades, suggesting a higher fixation of nonsynonymous mutations due to a selective sweep by Wolbachia. Trans-Mediterranean and within-European dispersal routes were supported. We suggest that the ancestral populations diversified by geographic isolation due to glaciations and that the diversity was reduced in the west by a recent Wolbachia-driven sweep(s). The intermediate clade exhibited a body size and host plant that differed from the other clades. Pros and cons of the possible use of infected-clade males to control uninfected populations are discussed..
10. San PP, Tuda M, Takagi M, Impact of relative humidity and water availability on the life history of the predatory mite Amblyseius swirskii, BioControl, https://doi.org/10.1007/s10526-021-10081-y, 66, 497–510, 2021.08.
11. Tuda M, Luna-Maldonado AI,, Image-based insect species and gender classification by trained supervised machine learning algorithms., Ecological Informatics, 60, 101135, 2020.11, Classification of specimens is the important first step to characterize populations and species assemblages. Although species-level classification has been a popular goal, the sex difference and sex ratio are also an important property in ecology and pest control. Here we focus on the images of mixed sex specimens of a stored product pest beetle (Callosobruchus chinensis) and its parasitoids (parasitic wasps; Anisopteromalus and Heterospilus) in various postures and classify them into species and sex, by training supervised machine learning programs: logistic model trees (LMT), random forest, support vector machine (SVM), simple logistic regression, multilayer perceptron and AdaBoost (adaptive boosting). Both object-based features and pixel-based features were extracted from each image. Simple logistic regression, LMT and AdaBoost (employing simple logistic regression as base learner) performed well to classify sexes or species/sexes; average true positive rates (prediction accuracy) of 88.5–98.5% were achieved for within-species sexing of beetles or wasps, 97.3% for two species sexing and 93.3% for three species sexing. For most datasets, the best performed models incorporated both object-based features and pixel-based features. LMT models were identical to simple logistic regression models in most cases. Robust performance and small variation in prediction accuracy of simple logistic regression, irrespective of classification target (sexes or species), was shown, and this is probably because of the efficient feature selection implemented in the algorithm. This study is one of the earliest to classify the gender of insects using machine learning based on still images..
12. Nakamichi Y, Tuda M, Wajnberg E., Intraspecific interference between native parasitoids modified by a non-native parasitoid and its consequence on population dynamics, Ecological Entomology, DOI: 10.1111/een.12909, 45, 2020.12.
13. Sanaei E, Husemann M, Seiedy M, Rethwisch M, Tuda M, Toshova TB, Kim MJ, Atanasova D, Kim I, Global genetic diversity, lineage distribution and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae), Ecology and Evolution, 10.1002/ece3.5474, 9, 9546-9563, 2019.09.
14. Takano S, Tuda M, Takasu K, Furuya N, Imamura Y, Kim S, Tashiro K, Iiyama K, Tavares M, Amaral AC, Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle., Proceedings of the National Academy of Sciences of the United States of America (PNAS), 10.1073/pnas.1618094114, 114(23), 6110–6115, 2017.06, Maternally inherited bacterial endosymbionts in arthropods manipulate host reproduction to increase the fitness of infected females. Cytoplasmic incompatibility (CI) is one such manipulation, in which uninfected females produce few or no offspring when they mate with infected males. To date, two bacterial endosymbionts, Wolbachia and Cardinium, have been reported as CI inducers. Only Wolbachia induces complete CI, which causes 100% offspring mortality in incompatible crosses. Here we report a third CI inducer that belongs to a unique clade of Alphaproteobacteria detected within the coconut beetle, Brontispa longissima. This beetle comprises two cryptic species, the Asian clade and the Pacific clade, which show incompatibility in hybrid crosses. Different bacterial endosymbionts, a unique clade of Alphaproteobacteria in the Pacific clade and Wolbachia in the Asian clade, induced bidirectional CI between hosts. The former induced complete CI (100% mortality), whereas the latter induced partial CI (70% mortality). Illumina MiSeq sequencing and denaturing gradient gel electrophoresis patterns showed that the predominant bacterium detected in the Pacific clade of B. longissima was this unique clade of Alphaproteobacteria alone, indicating that this endosymbiont was responsible for the complete CI. Sex distortion did not occur in any of the tested crosses.
The 1,160 bp of 16S rRNA gene sequence obtained for this endosymbiont had only 89.3% identity with that of Wolbachia, indicating that it can be recognized as a distinct species. We discuss the potential use of this bacterium as a biological control agent..
15. Kébé K, Alvarez N, Tuda M, Arnqvist G, Fox CW, Sembène M, Espíndola A, Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata., Journal of Biogeography 44, 2515–2526, in press, 2017.11, Aim: The seed beetle Callosobruchus maculatus is an important tropical and subtropical pest of legumes distributed world-wide. Archaeological evidence suggests an African origin with later world-wide invasion facilitated by the last centuries’ legume trading and exchange. To date, no studies could identify the routes or timing of dispersal of the species. Here, we investigate the global phylogeography of this pest to shed light on the main inter-continental dispersal routes that led to it becoming a cosmopolitan pest.
Location: World-wide.
Methods: We sampled seed beetles over a large fraction of the species’ range and sequenced one nuclear and three mitochondrial loci. Using this data, we estimated spatio-temporal phylogeographical reconstructions, and the demographic history of the species. We also used our dataset to evaluate the effect of panmixia on Bayesian demographic estimations.
Results: Callosobruchus maculatus exhibited regional and continental genetic structure, with the highest genetic diversity found in Africa. Our discrete Bayesian phylogeographical approach indicated that the species first dispersed to Asia and then colonized the pantropical belt. The three methods used for inferring the demographic history of C. maculatus indicated a recent demographic expansion in the world-wide dataset, as well as in the subset restricted to African samples. Such a signal was, however, not observed in the subset composed of Asian specimens. This demographic expansion occurred in the Holocene and is likely explained by the spread of cowpea and other host legumes across and out of Africa.
Main conclusions: The inferred dispersal routes support the idea that the evolutionary history of C. maculatus relates to the trade of its main host plant, Vigna unguiculata. Human-mediated processes appear to have shaped the global genetic structure of this pest. As a methodological implication, we demonstrate that coalescent-based demographic reconstructions can be erroneous if the dataset violates the assumption of panmixia..
16. Fukuda K, Yanagawa A, Tuda M, Sakurai G, Kamitani S, Furuya N, Sexual difference in antennal sensilla abundance, density and size in Callosobruchus rhodesianus (Coleoptera: Chrysomelidae: Bruchinae)., Applied Entomology and Zoology, 10.1007/s13355-016-0441-4, 51, 4, 641-651, 2016.11.
17. Saeki Y, Tani S, Fukuda K, Iwase S, Sugawara Y, Tuda M, Takagi M, Costs and benefits of larval jumping behaviour of Bathyplectes anurus., The Science of Nature, 10.1007/s00114-015-1324-1, 103, 1, 2016.02, Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jumpsignificantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species..
18. Iwase S, Tani S, Saeki Y, Tuda M, Haran J, Skuhrovec J, Takagi M, Dynamics of infection with Wolbachia in Hypera postica (Coleoptera: Curculionidae) during invasion and establishment., Biological Invasions, 17, 12, 3639-3648, 2015.12, The process of loss or gain of parasites during invasion of new lands is not well understood. The alfalfa weevil Hypera postica is an invasive pest of various leguminous crops and consists of three major mitochondrial haplotypes, ‘Western’, ‘Egyptian’ and ‘Eastern’. The Western strain is infected with the endosymbiotic proteobacteria Wolbachia, that cause unidirectional complete reproductive incompatibility, in its native (Europe) and an introduced (the United States) ranges. However, our preliminary screening of a few introduced populations in Northern Kyushu, southwestern Japan, failed to detect Wolbachia from the Western strain. A larger-scale and historical assessment of Wolbachia infection may allow to estimate when and how the bacteria were lost, and current geographical distribution of infection among host haplotypes. In this study, we aim to assess the Wolbachia-infection status of H. postica populations throughout Northern Kyushu, where H. postica invasion to Japan was first found. A total of 228 individuals from seven regions in Northern Kyushu collected in different time periods from 1982 to 2015 and 14 individuals from Europe were subjected to PCR diagnostics for Wolbachia. Wolbachia from the Western strain was not detected, irrespective of the time periods and geographic areas in Northern Kyushu. We found ‘Egyptian’-strain H. postica collected most recently from an island off Kyushu harboured a supergroup-B Wolbachia variant. This variant was genetically different from the European Wolbachia variant infecting Western-strain H. postica. The infection was new to the Egyptian haplotype and was estimated to have taken place independently of the loss in the Western strain..
19. Downey MH, Searle R, Bellur S, Geiger A, Maitner BS, Ohm JR, Tuda M, Miller TEX, A comparative approach to testing hypotheses for the evolution of sex-biased dispersal in bean beetles, Ecology and Evolution, 5, 21, 4819-4828, 2015.11.
20. Arnqvist G, Sayadi A, Immonen E, Hotzy C, Rankin D, Tuda M, Hjelmen CE, Johnston JS, Genome size correlates with reproductive fitness in seed beetles., Proceedings of the Royal Society B, 282 (1815), 20151421, 2015.09, The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the ‘C-value paradox’. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in lifehistory traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4–5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution..
21. Kergoat GJ, Le Ru BP, Sadeghi SE, Tuda M, Reid CAM, György Z, Genson G, Ribeiro-Costa CS, Delobel A, Evolution of Spermophagus seed beetles (Coleoptera, Bruchinae, Amblycerini) indicates both synchronous and delayed colonizations of host plants., Molecular Phylogenetics and Evolution, 89, 91-103, 2015.08.
22. Iwase S, Nakahira K, Tuda M, Kagoshima K, Takagi M, Host-plant dependent population genetics of the invading weevil Hypera postica, Bulletin of Entomological Research, 2015.02.
23. Ikegawa Y, Ezoe H, Namba T, Tuda M, Effects of nonspecific adaptive defense by pests on efficiency of biological control by multiple natural enemies., Journal of the Faculty of Agriculture, Kyushu University, 59, 2, 305-311, 2014.09.
24. Tuda M, Kagoshima K, Toquenaga Y, Arnqvist G, Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors., PLoS ONE, 10.1371/journal.pone.0106268, 9, 9, e106268, 2014.09, Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene flow mediated by human crop trade..
25. Saeki Y, Tuda M, Crowley PH, Allocation trade-offs and life histories: a conceptual and graphical framework., Oikos, 0.1111/oik.00956, 123, 7, 786-793, 2014.07.
26. Tuda M, Li-Hsin Wu, Yamada N, Wang C-P, Wu W-J, Buranapanichpan S, Kagoshima K, Chen ZQ, Teramoto KK, Kumashiro BR, Heu R, Host shift capability of a specialist seed predator of an invasive plant: roles of competition, population genetics and plant chemistry., Biological Invasions, 16, 2, 303-313, 2014.02.
27. T Yahara, F Javadi, Y Onoda, LP de Queiroz, DP Faith, DE Prado, M Akasaka, T Kadoya, F Ishihama, S Davies, JWF Slik, T Yi, K Ma, C Bin, D Darnaedi, RT Pennington, M Tuda, et al., Global legume diversity assessment: concepts, key indicators, and strategies., TAXON, 62, 2, 249-266, 2013.04.
28. Tuda, M., Evolutionary diversification of bruchine beetles: climate-dependent traits and development associated with pest status. , Bulletin of Entomological Research, 101(4), 415-422., 2011.07.
29. Vamosi SM, den Hollander MD, Tuda M, Egg dispersion is more important than competition type for herbivores attacked by a parasitoid., Population Ecology, 53(2): 319–326, 2011.04.
30. Arnqvist, G., Dowling, D.K., Eady, P., Gay, L., Tregenza, T., Tuda, M. and Hosken, D.J., The genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect., Evolution, 64, 3354-3363, 2010.12, 近年、ミトコンドリア(mt)DNAが、エネルギー生産する酵素複合体を一緒に作る核遺伝子と共進化することが解明されている。これはmt遺伝子と核遺伝子の間のゲノム間エピスタシスが生物個体全体の代謝表現型に影響することを示唆する。そこでヨツモンマメゾウムシの複数のmt系統と核系統間で組み合わせ交配し、代謝率を2つの異なる温度下で測定した。代謝率はmtと核の系統間交互作用と温度に影響された。塩基配列データは、mtの遺伝的変異がこの交互作用の結果を決めることを示唆した。この実験は、2つのゲノムの遺伝的相互作用と遺伝子型x遺伝子型x環境間交互作用を明らかにした。これらの結果は1. 生活史進化一般、特に温度適応の複雑性に洞察を与え、2. 非中立的なmtDNA多型の維持機構を示唆する。
The extent to which mitochondrial DNA (mtDNA) variation is involved in adaptive evolutionary change is currently being reevaluated. In particular, emerging evidence suggests that mtDNA genes coevolve with the nuclear genes with which they interact to form the energy producing enzyme complexes in the mitochondria. This suggests that intergenomic epistasis between mitochondrial and nuclear genes may affect whole-organism metabolic phenotypes. Here, we use crossed combinations of mitochondrial and nuclear lineages of the seed beetle Callosobruchus maculatus and assay metabolic rate under two different temperature regimes. Metabolic rate was affected by an interaction between the mitochondrial and nuclear lineages and the temperature regime. Sequence data suggests that mitochondrial genetic variation has a role in determining the outcome of this interaction. Our genetic dissection of metabolic rate reveals a high level of complexity, encompassing genetic interactions over two genomes, and genotype x genotype x environment interactions. The evolutionary implications of these results are twofold. First, because metabolic rate is at the root of life histories, our results provide insights into the complexity of life-history evolution in general, and thermal adaptation in particular. Second, our results suggest a mechanism that could contribute to the maintenance of nonneutral mtDNA polymorphism..
31. Arnqvist, G., Tuda, M., Sexual conflict and the gender load: correlated evolution between population fitness and sexual dimorphism in seed beetles., Proceedings of the Royal Society B, 277, 1345-1352, 2010.04, 雌雄はゲノムの大半を共有しながらも選択は異なる。性的対立する遺伝子座は理論上、集団内の性的負荷を引き起こす。しかし、遺伝子座内性的対立(ISC)が移行的な進化的状態(性的二型(SD)の進化により対立は急速に解消)なのか、慢性的な適応障害なのか、は現在明らかでない。同じ条件下では、ISCは雌雄において表現される形質の集団適応度とSDの相関進化として現れるはずだ。そこで同じ飼育環境に適応したマメゾウムシの異なる実験室集団間で適応度とSDを比較しISCの効果を試験した。重要な生活史形質である幼生発育期間のSDは適応度と正の関係があり、これは集団適応度と発育期間の相関進化(雌で正、雄で負)によった。雌雄間の遺伝的結合を緩めることで雌雄がそれぞれの異なる適応度ピークへと近づいたと言える。
Although males and females share much of the same genome, selection is often distinct in the two sexes. Sexually antagonistic loci will in theory cause a gender load in populations, because sex-specific selection on a given trait in one sex will compromise the adaptive evolution of the same trait in the other sex. However, it is currently not clear whether such intralocus sexual conflict (ISC) represents a transient evolutionary state, where conflict is rapidly resolved by the evolution of sexual dimorphism (SD), or whether it is a more chronic impediment to adaptation. All else being equal, ISC should manifest itself as correlated evolution between population fitness and SD in traits expressed in both sexes. However, comparative tests of this prediction are problematic and have been unfeasible. Here, we assess the effects of ISC by comparing fitness and SD across distinct laboratory populations of seed beetles that should be well adapted to a shared environment. We show that SD in juvenile development time, a key life-history trait with a history of sexually antagonistic selection in this model system, is positively related to fitness. This effect is due to a correlated evolution between population fitness and development time that is positive in females but negative in males. Loosening the genetic bind between the sexes has evidently allowed the sexes to approach their distinct adaptive peaks..
32. Yanagi S, Tuda M, Interaction effect among maternal environment, maternal investment and progeny genotype on life history traits in Callosobruchus chinensis., Functional Ecology, 24, 2, 383-391, 2010.04, 母親の環境条件(前世代の環境preE)に依存して、母親から子への投資量(環境E)が変化するとき、適応度を上げるために子の遺伝子(G)の発現も変化すると予測される。アズキゾウムシにおいて、EとGの遺伝相関の影響を取り除くために近交系の雌を用いて、preEとEに対するGの反応を調べた。高密度(preE)飼育した母親との交配では低密度適応した野外系統の父親の子(G)が、低密度(preE)飼育した母親とでは高密度適応した室内系統の父親の子(G)が、卵サイズ(E)の増大とともに発育期間が急激に短くなり(適応度が上がり)予測を支持した。このような密度依存的な母性効果(preE×E×G交互作用)は、新しい環境における急速な適応進化を可能にする。
1. Transgenerational effects, genetic or non-genetic, affect population dynamics and the evolution of life-history traits. Besides genetic components, the size of gametes (eggs and seeds), simultaneously a parental and progeny character, can mediate environmental condition experienced by a parent. In both animals and arthropods, mothers are known to reduce their egg mass depending on their malcondition.
2. Progeny may also modify their life history traits to increase their own fitness when constrained by maternal investment, which may eventually nullify transgenerational effects on population dynamics and evolution. Such fitness modification by the progeny under new environmental conditions requires phenotypic plasticity interacting with egg mass. We hypothesize that different selective environments should produce inter-population genetic diversification of the response to maternal investment on each egg, which would be detected as a paternal genotype x environment x previous (i.e. maternal) environment (G x E x preE) interaction in progeny fitness.
3. To evaluate the contribution of maternal non-genetic resource and the genetic component separately, we used an inbred-isofemale-line approach to eliminate the influence of the genetic correlation between egg mass and other life history traits, in the adzuki bean beetle, Callosobruchus chinensis. The females were reared at either high or low densities to generate variability in egg resources. To test the additive or interactive effect of genotype, non-genetic egg resources, and maternal environment on the life history traits of the progeny, they were crossed with males from laboratory and wild strains that had been subjected to different levels of population density.
4. The G x E x preE interaction effect was detected on the correlation structure between egg mass and development time: In the offspring of mothers reared at low density, the negative correlation between egg mass and development time was higher with lab strain fathers, whereas in the offspring of mothers reared at high density, the negative correlation was higher with the wild strain fathers.
5. Our results indicate a genetic difference in the response of development time but not of adult mass to environmental variation in egg mass. Such density-dependent enhancement of maternal effects may destabilize population dynamics and accelerate evolution..
33. Ayabe, Y., Tuda, M., Mochizuki, A. , Benefits of repeated mine trackings by a parasitoid when the host leafminer has a tortuous feeding pattern., Animal Behaviour, 76 (6), 1795-1803, 2008.12.
34. Kergoat, G.J., Silvain, J.-F., Delobel, A., Tuda, M., Anton, K.-W., Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: Molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae)., Molecular Phylogenetics and Evolution, 43(1), 251-269, 2007.04.
35. Kergoat, G.J., Silvain, J.-F., Buranapanichpan S., Tuda, M., When insects help to resolve plant phylogeny: Evidence for a paraphyletic genus Acacia from the systematics and host-plant range of their seed-predators., Zoologica Scripta, 36 (2), 143-152, 2007.01.
36. Tuda, M., Ronn, J., Buranapanichpan, S., Wasano, N., Arnqvist, G., Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with stored-product pest status., Molecular Ecology, 15(12): 3541-3551, 2006.10.
37. Tuda, M., Matsumoto, T., Itioka, T., Ishida, N., Takanashi, M., Ashihara, W., Kohyama, M. and Takagi, M., Climatic and inter-trophic effects detected in 10-year population dynamics of biological control of the arrowhead scale by two parasitoids in southwestern Japan., Population Ecology, 48(1), 59-70, 2006.01.
38. M. Tuda, M. Shimada, Complexity, evolution and persistence in host-parasitoid experimental systems, with Callosobruchus beetles as the host., Advances in Ecological Research, 10.1016/S0065-2504(04)37002-9, 37, 37-75, 37, 37-75, 2005.01.
39. Tuda, M., Wasano, N., Kondo, N., Horng, S.-B., Chou, L.-Y. and Tateishi, Y., Habitat-related mtDNA polymorphism in a stored-bean pest Callosobruchus chinensis (Coleoptera: Bruchidae)., Bulletin of Entomological Research, 10.1079/BER2003277, 94, 1, 75-80, 94(1), 75-80, 2004.01.
40. 津田みどり, 寄主穿孔深度と寄生蜂産卵管長の間の軍拡競走:資源サイズとトレードオフの影響, 日本生態学会誌, 56(1), 63-72, 2006.04.
41. Tuda, M., Shima, K., Johnson, C. D. and Morimoto, K., Establishment of Acanthoscelides pallidipennis (Coleoptera: Bruchidae) feeding in seeds of the introduced legume Amorpha fruticosa, with a new record of its Eupelmus parasitoid in Japan., Applied Entomology and Zoology, 36, 3, 269-276, 36 (3), 269-276, 2001.01.
42. Tuda, M., Chou, L.-Y., Niyomdham, C., Buranapanichpan, S. and Tateishi, Y., Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): high host specificity of non-pests to Cajaninae (Fabaceae)., Journal of Stored Products Research, 10.1016/j.jspr.2004.09.003, 41, 1, 31-45, 41(1), 31-45, 2005.01.
43. M. Tuda, M.B. Bonsall, Evolutionary and population dynamics of host-parasitoid interactions., Researches on Population Ecology, 10.1007/PL00011985, 41, 1, 81-91, 41(1),81-91, 1999.01.
44. M. Tuda, M. Shimada, Developmental schedules and persistence of experimental host-parasitoid systems at two different temperatures, Oecologia, 103(3),283-291, 1995.01.
45. 津田みどり, マメ-マメゾウムシ-寄生蜂実験群集における共存持続機構, 日本生態学会誌, 46 (3),313-320, 1996.12.
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. 高 思奕, 津田みどり, ミカンとヤノネカイガラムに対する異なる元素ナノ粒子の葉面散布の影響 Impact of foliar applications of different elements of nanoparticles on mandarin orange and scale insects, 第71回日本生態学会大会, 2024.03.
2. San PP, 津田みどり, 気温・CO2濃度上昇の植食者、内部寄生者および捕食寄生者の群集動態へのインパクト Impacts of temperature and CO2 level rise on community dynamics of herbivores, endosymbionts, and parasitoids, 第71回日本生態学会大会, 2024.03.
3. Tuda M, Leroy E, Gao S, San PP, Ellies-Oury MP, Egg size plasticity under climate change is affected by endosymbiotic bacterial infection, 第39回個体群生態学会大会, 2023.10.
4. Tuda M, Warming reduces the density-dependent divergence in emergence time for two competing parasitoid species, iTHEMS Biology Seminar (理化学研究所 数理創造プログラム), 2023.03.
5. Gao S, Tuda M, Control of scale insects on mandarin orange Citrus unshiu by foliar applications of nano-micronutrients, 第67回日本応用動物昆虫学会大会, 2023.03.
6. 津田みどり・サンピューピュー・藤田龍介・サベトアハメド・フェラリジュリア・東房健一・原亮太朗・高思奕・清水邦義・久米篤, 高気温・CO2環境とWolbachia感染の体内外群集動態への影響。ナノ薬剤の天敵誘引効果, 第67回日本応用動物昆虫学会大会, 2023.03.
7. 津田みどり, 張耀卓, 競争種がもたらすカオスな群集動態の行動メカニズムBehavioral mechanism of chaotic community dynamics, 第69回日本生態学会大会, 2022.03.
8. San PP, Tuda M, Impacts of endosymbiotic Wolbachia bacterial diversity, parasitoid diversity, and climate change on host–parasitoids system persistence, 第69回日本生態学会大会, 2022.03.
9. 張 耀卓, 靳 正雅, 津田 みどり, 在来寄生蜂の種内干渉への外来寄生蜂および寄主密度の影響, 第65回日本応用動物昆虫学会大会, 2021.03.
10. San PP, Tuda M, Effects of Wolbachia infection on life history traits in azuki bean beetle Callosobruchus chinensis and its parasitoids under climate change, 第65回日本応用動物昆虫学会大会, 2021.03.
11. 津田みどり, 岩瀬俊一郎, Haran J, Kebe K, Skuhrovec J, Sanaei E, 辻尚道, マメ科害虫の原産地における共生菌感染と遺伝的分化・交雑:細胞質不和合性による防除の可能性, 第65回日本応用動物昆虫学会大会, 2021.03.
12. 津田みどり, マメゾウムシと寄生蜂の古典的モデル生物群集からの21世紀的提言:環境変化と侵入生物がもたらす群集動態の変化を進化、性差、個体行動から解明する, 第62回日本応用動物昆虫学会大会, 2018.03.
13. 津田みどり, 性と個体群と群集: 環境と相互作用種の移行期における生物の動態と進化, 第64回日本生態学会大会, 2017.03.
14. Fukuda K, Tuda M, Mechanism of stable polymorphism of antennal segments number: Trade-off between pre- and post-copulatory fitness in a seed beetle species, XXV International Congress of Entomology, 2016.09.
15. Tuda M, Aung TL, Lwin TH, Kagoshima K, Mori K, Tashiro K, Effect of atmospheric CO2 rise on population size, development and gene expression is different between populations of a seed beetle, XXV International Congress of Entomology, 2016.09.
16. Takagi M, Nakahira K, Tuda M, Biological control of alfalfa weevil under unstable paddy field environment in Japan, XXV International Congress of Entomology, 2016.09.
17. 津田 みどり, Than Lin Aung, Than Htway Lwin, 鹿児嶋久美子, 森一樹, 田代 康介, 大気中CO2濃度上昇が異なる種内競争型のマメゾウムシの発育、個体群サイズ、および遺伝子発現に与える影響, 日本昆虫学会第76回大会/第60回日本応用動物昆虫学会大会合同大会, 2016.03.
18. 福田 一人, 津田 みどり, マメゾウムシの性選択における触角節数不足個体の適応度, 日本昆虫学会第76回大会/第60回日本応用動物昆虫学会大会合同大会, 2016.03.
19. 岩瀬俊一郎, 津田 みどり, Julien Haran, Jiri Skuhrovec, 鹿児嶋久美子, 森本 桂, 侵入害虫アルファルファタコゾウムシの原産地域におけるmtDNA系統の地理的分布とボルバキア感染による選択的sweep, 日本昆虫学会第76回大会/第60回日本応用動物昆虫学会大会合同大会, 2016.03.
20. 菅原有真, 津田 みどり, 種内競争、寄生蜂、潜行コストが貯穀害虫の潜行・産卵深度に与える影響, 日本昆虫学会第76回大会/第60回日本応用動物昆虫学会大会合同大会, 2016.03.
21. Tuda M, Tani S, Iwase S, Saeki Y, Mori K, Tashiro K, Host-plant and genetic effects on herbivore's fitness and gene expression, The 31st Annual Meeting of the Society of Population Ecology, 2015.10.
22. 津田 みどり, 谷聡一郎, 岩瀬俊一郎, 佐伯順子, 森一樹, 田代 康介, 植食性昆虫の寄主範囲拡大が発育と網羅的遺伝子発現に与える影響, 日本昆虫学会第75回大会, 2015.09.
23. 可児友哉, 津田 みどり, 寄主昆虫の細胞内共生菌が寄主および寄生蜂に与える影響, 日本昆虫学会第75回大会, 2015.09.
24. 岩瀨俊一郎, 津田 みどり, 髙木 正見, 侵入害虫アルファルファタコゾウムシHypera posticaの寄主植物およびフェノロジーの違いによる遺伝的分化と推定個体数変動, 日本昆虫学会第75回大会, 2015.09.
25. 福田一人, 津田 みどり, 触角節数と感覚毛形態の雌雄間比較, 日本昆虫学会第75回大会, 2015.09.
26. Than Htway Lwin, Tuda M, Combined effect of elevated CO2 level and temperature on host - 2 parasitoids dynamics, 日本昆虫学会第75回大会, 2015.09.
27. 菅原有真, 津田 みどり, マメゾウムシの垂直移動分散の適応的意義:種内競争回避か捕食寄生回避か, 日本昆虫学会第75回大会, 2015.09.
28. Saeki Y, Sugawara Y, Tuda M, Switzer PV, Effect of foraging behavior on correlates of dispersal ability in male and female Japanese beetles, 52nd Annual Conference of the Animal Behavior Society, 2015.06.
29. 菅原有真, 津田みどり, 被食者による捕食者回避行動の可塑性と進化が被食者個体群動態に与える影響, 第59回日本応用動物昆虫学会大会, 2015.03.
30. 福田一人, 津田 みどり, 佐伯順子, 集団内多型の維持機構:正常な触角節数では感覚毛が密, 第59回日本応用動物昆虫学会大会, 2015.03.
31. 可児友哉, 津田 みどり, マメゾウムシの寄主シフトにおける細胞内共生菌の影響, 第59回日本応用動物昆虫学会大会, 2015.03.
32. 髙木 正見, 中平賢吾, 岩瀬俊一郎, 谷聡一郎, 津田 みどり, 天敵農薬ヨーロッパトビチビアメバチ剤の利用法, 第59回日本応用動物昆虫学会大会, 2015.03.
33. 谷聡一郎, 岩瀬俊一郎, 佐伯順子, 津田 みどり, 髙木 正見, 侵入害虫アルファルファタコゾウムシにおける寄主植物シフトおよび遺伝的系統の効果, 第59回日本応用動物昆虫学会大会, 2015.03.
34. 岩瀬俊一郎, 津田 みどり, 髙木 正見, 侵入害虫アルファルファタコゾウムシの寄主植物およびフェノロジーによる遺伝的分化と推定個体数変動, 第59回日本応用動物昆虫学会大会, 2015.03.
35. 津田みどり, 谷聡一郎, 岩瀬俊一郎, 佐伯順子, 森一樹, 田代 康介, 植食性昆虫の近縁・遠縁寄主シフトにおける適応度と遺伝子発現の変化, 第62回日本生態学会大会, 2015.03.
36. 佐伯順子, 菅原有真, Paul V. Switzer, 津田みどり, 侵入害虫マメコガネ(Popillia japonica)の飢餓状態および蔵卵数と飛翔特性の関係, 第62回日本生態学会大会, 2015.03.
37. Tuda M, Host-plant change and its mechanism in invasive pest beetles., Symposium on invasive insects: current trends and future directions in research, 2015.02.
38. 元山尭之, 大原直通, 津田みどり, 廣渡 俊哉, 紙谷 聡志, 英彦山におけるバナナトラップを用いた甲虫相調査, 日本昆虫学会九州支部大会, 2014.12.
39. 津田 みどり, 中道康文, 個体群動態から個体行動を推定・検証する:侵入寄生蜂がもたらす寄主ー寄生蜂系のカオスを例に, 第33回日本行動学会大会, 2014.11.
40. Midori Tuda, Than Lin Aung, Kumiko Kagoshima, Yasufumi Nakamichi, Eric Wajnberg, Host-parasitoid population dynamics and individual behavior under environmental CO2 rise or species invasion., Netherlands-Japan Seminar on Parasitoid Biology, 2014.08.
41. 津田 みどり, 種子食昆虫における乾燥耐性の進化, 低温生物工学会, 2014.06.
42. 津田 みどり, 鹿児嶋久美子, 徳永幸彦, Arnqvist, Göran, 貯蔵マメ害虫の大陸間・地域間遺伝的分化パターンから推定する地理的隔離・寄主植物利用・人為的要因の効果, 第58回日本応用動物昆虫学会大会, 2014.03.
43. 岩瀬俊一郎, 津田 みどり, 中平 賢吾, 髙木 正見, 鍬田龍星, Haran, Julien, Skuhrovec, Jirislav, アルファルファタコゾウムシの侵入後30年間における遺伝的系統の変遷と原産地の推定, 第58回日本応用動物昆虫学会大会, 2014.03.
44. 佐伯順子, 谷聡一郎, 福田一人, 岩瀬俊一郎, 河原林裕, 津田 みどり, 髙木 正見, ヨーロッパトビチビアメバチBathyplectes anurus幼虫の跳躍行動:その適応的意義とコスト, 第58回日本応用動物昆虫学会大会, 2014.03.
45. 福田 一人, 津田 みどり, 不利に見える形質でも生き残ることができる:雄間競争下での触角節不足個体の繁殖適応度, 第58回日本応用動物昆虫学会大会, 2014.03.
46. Than Lin Aung, 鹿児嶋久美子, Deena Husein, 津田 みどり, 高CO2濃度下での寄主—寄生蜂系個体群動態と進化的変化, 第61回日本生態学会大会, 2014.03.
47. Than Lin Aung, 津田 みどり, Effect of environmental CO2 concentration on host and parasitoid population dynamics: Is it predictable based on intraspecific competition type?, Annual Meeting of the Society of the Population Ecology, 2013.10.
48. 津田みどり, 中平 賢吾, 柳真一, 佐伯順子, 鹿児嶋久美子, 触角節数の集団内多型の進化的維持機構:マメゾウムシの場合, 日本応用動物昆虫学会大会, 2013.03.
49. 岩瀬俊一郎, 津田みどり, 中平 賢吾, 髙木 正見, わが国におけるアルファルファタコゾウムシの遺伝子型頻度とその変遷, 日本応用動物昆虫学会大会, 2013.03.
50. Saeki Y, Tuda M, Crowley P, The size-number trade-off in clonal broods of a parasitic wasp: Responses to the amount and timing of resource availability., Annual Meeting of Society of Population Ecology, 2012.10.
51. Tuda M, Nakamichi Y, Linking community dynamics to population and individual behavior., Second Entomophagous Insects Conference, 2011.06, Three-species systems allow an understanding of irregular, complex population dynamics of multiple species assemblages, with emerging effects of indirect interactions. We focused on a laboratory system consisting of a bruchine species Callosobruchus chinensis as a host and two parasitoids, a chalcid Anisopteromalus calandrae and a braconid Heterospilus prosopidis, with each species introduced sequentially.
With a parameterized semi-mechanistic model, we found the introduction of a second parasitoid (H. prosopidis) destabilized the dynamics of host-parasitoid (A. calandrae) interaction towards chaos. Comparison of parameters before and after the introduction indicated that the parameter that was altered by the introduction was solely the mutual interference in A. calandrae. Finally, to confirm the parameter change detected at the population level, we show our behavioral observation through CCD video camera of the interference between A. calandrae females with a H. prosopidis female when parasitizing their common host..
52. Tuda M, Evolutionary diversification of bean beetles: climate-dependent traits and development associated with pest status., Journal of Experimental Biology Symposium: Survival in a Changing World, 2009.08.
53. 津田みどり, 山田直隆, G.J.Kergoat, G.J.Kenicer, Z.Gyorgy, A.Szentesi, T.Jermy, 東欧産マメゾウムシの寄主決定要因:植物の形態、化学・季節生態、系統の効果, 第55回日本生態学会大会, 2008.03.
54. Tuda, M., Kuroiwa, S., Kozaki, Y., Takagi, M., Spatial population dynamics of the arrowhead scale, a pest of unshiu orange: testing the effect of spatial configuration and plant quality, The 23rd Symposium of Population Ecology, 2007.10.
55. Tuda, M., Induction of chaos by an introduced species to a pest-enemy system: Analysis of nonlinear population dynamics data., The 2nd International Workshop on Ecological Informatics of Chaos and Complex Systems- Spectral Imaging for Ecosystem Modelling, 2007.09.
56. Tuda, M., Sasaki A., Host-parasitoid arms race with host competition for refuge., Japanese-Korean Joint Meeting for Mathematical Biology, 2006.09.
57. 津田みどり・Sawai Buranapanichpan・和佐野直哉・Johanna Ronn・Goran Arnqvist, セコブマメゾウムシ(Callosobruchus)属における乾燥豆利用の進化, 日本応用動物昆虫学会, 2006.03.
作品・ソフトウェア・データベース等
1. Luna-Maldonado, A.I., 津田みどり, マメゾウムシとその天敵コバチの任意体勢画像からの雌雄判別および種判別ソフト, 2018.05.
2. 津田みどり・嶋田正和・藤井義晴・立石庸一・加藤俊英・鹿児嶋久美子・井上仁・上塘深, 植物と昆虫のデータベース(PIB), 2012.01
植物は、多くの有用植物や雑草を含みます。それらを餌として利用する植食性昆虫群は、作物の害虫や、雑草の天敵として潜在的利用価値がある種も含みます。さらに、天然殺虫剤と言われる、昆虫に対する毒性化学物質(シアン化化合物、フラボノイド、非タンパク質性アミノ酸)や誘引物質、忌避物質が様々な植物種から発見されています。そこで、植物と植食性昆虫の組み合わせと、植物の含有化学物質データが蓄積されつつある現時点で、データベースを構築し、順次公開しています。
, [URL].
3. 辺英雄、津田みどり, 空間自己・クロス相関解析ソフト(空間補間版), 2009.03.
4. 黒岩志穂里・津田みどり, 方向性空間自己相関解析ソフト, 2007.10.
5. 津田みどり・森田茂樹, 空間クロス相関・自己相関解析ソフト, 2004.03.
6. 綾部慈子・津田みどり, 潜葉虫の食害痕のフラクタル次元解析ソフト, 2004.03.
その他の優れた研究業績
2005.10, 個体群生態学会奨励賞「実験室実験系を用いた寄主−寄生蜂系についての個体群生態学および進化生態学」.
2005.03, 日本応用動物昆虫学会奨励賞「マメゾウムシ科昆虫の応用進化生態学的研究」.
学会活動
所属学会名
日本分子生物学会
Entomological Society of America
International Organisation for Biological Control
日本ICIPE協会
日本昆虫学会
Society for the Study of Evolution
日本進化学会
個体群生態学会
日本生態学会
日本応用動物昆虫学会
日本数理生物学会
学協会役員等への就任
2021.04~2023.03, 個体群生態学会, 理事.
2017.01~2017.10, 個体群生態学会, 第33回個体群生態学会大会組織委員.
2017.04~2021.03, Entomological Society of America, Henry & Sylvia Richardson Research Grant 審査委員.
2015.01~2017.09, 個体群生態学会, 個体群生態学会会報編集長.
2015.01~2017.09, 個体群生態学会, 理事.
2013.04~2014.12, 個体群生態学会, 運営委員.
2006.01~2016.12, 日本生態学会, 日本生態学会誌編集委員.
2008.04~2011.03, 日本生態学会, 大会企画委員.
2009.01~2010.12, 日本応用動物昆虫学会, 評議員.
2007.04~2022.12, 日本生態学会, 地区委員.
2008.04~2011.03, 日本生態学会, 学会賞審査委員.
2008.01~2009.12, 日本生態学会, 運営委員.
2007.04~2010.03, 個体群生態学会, 運営委員.
2007.04~2010.03, 個体群生態学会, 学会賞審査委員.
学会大会・会議・シンポジウム等における役割
2024.03.16~2024.03.21, 日本生態学会大会, ポスター賞審査委員.
2023.10.27~2023.10.29, 個体群生態学会大会, ポスター賞審査委員.
2022.03.14~2022.03.19, 日本生態学会, 大会実行委員会会計.
2017.11.07~2017.11.09, AFELiSA (第14回日韓合同国際シンポジウム), 実行委員会副委員長.
2015.09.19~2015.09.21, 日本昆虫学会第75回大会, ウェブサイト管理責任者.
2017.10.13~2017.10.15, 第33回個体群生態学会大会, 実行委員.
2008.10.18~2008.10.19, 個体群生態学会大会, 公募シンポジウム・オーガナイザー.
2012.07.06~2012.07.12, First Joint Congress on Evolutionary Biology, Hamilton Award審査委員.
2001.03.01~2001.03.06, 日本生態学会大会テーマ別セッション, 座長(Chairmanship).
2009.04.01~2010.03.31, 日本生態学会大会, ポスター賞部会会長.
2008.04.01~2011.03.31, 日本生態学会大会, 企画委員.
2008.03.01~2008.03.09, 日本生態学会大会, 実行委員(ポスター担当).
2004.12.01~2004.12.09, 日本動物行動学会大会, 実行委員.
学会誌・雑誌・著書の編集への参加状況
2019.01~2020.12, Applied Entomology and Zoology誌, 国内, 編集委員.
2017.01~2018.12, Applied Entomology and Zoology誌, 国内, 編集責任者.
2015.01~2017.08, 個体群生態学会報, 国内, 編集委員長.
2001.04~2004.03, Population Ecology, 国際, 編集委員.
2011.01~2014.12, ISRN Ecology, 国際, 編集委員.
2006.01~2007.12, Entomological Science, 国際, 編集委員.
2008.03~2020.12, Journal of Asia-Pacific Entomology, 国際, 編集委員.
2005.01~2007.12, Ecological Research, 国際, 編集委員.
2005.01~2016.12, 日本生態学会誌, 国内, 編集委員.
2005.01~2007.12, Applied Entomology and Zoology誌, 国内, 編集委員.
2001.04~2004.03, 日本生態学会誌, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2023年度 16        16 
2022年度 13        13 
2021年度 13        13 
2020年度 11        11 
2019年度      
2018年度 10      11 
2017年度 22        22 
2016年度 13        13 
2015年度 11      17 
2014年度     13 
2013年度      
2012年度      
2011年度
2010年度
2009年度    
2008年度
2007年度 21  22 
2006年度 20  28 
2005年度
2004年度
2003年度
2002年度
2001年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
Humboldt University of Berlin, Julius-Kuhn Institute, Germany, Germany, 2023.07~2023.07.
Institut Valencià d'Investigacions Agràries (IVIA), Spain, 2023.06~2023.07.
INRAE, Bordeaux, France, 2023.06~2023.06.
Bordeaux Sciences Agro, INRAE, Bordeaux, France, France, 2023.05~2023.06.
CIRAD, Montpellier, France, 2023.06~2023.06.
ハワイ州農務省, UnitedStatesofAmerica, 2020.02~2020.02.
Kenting, Taiwan, 2020.01~2020.01.
チェンマイ大学, Thailand, 2019.12~2019.12.
フランス国立農業研究所・フランス国立情報学自動制御研究所, France, 2019.06~2019.07.
ハンガリー自然史博物館, Hungary, 2019.06~2019.07.
ハンガリー自然史博物館, Hungary, 2017.06~2017.07.
ハンガリー自然史博物館, Hungary, 2015.06~2015.07.
State of Hawaii, UnitedStatesofAmerica, 2015.02~2015.03.
Wageningen University, Netherlands, Hungary, 2014.08~2014.09.
ハンガリー自然史博物館, Hungary, 2014.05~2014.05.
San Diego County, UnitedStatesofAmerica, 2013.12~2014.01.
Ottawa Convention Centre, Canada, 2012.07~2012.07.
Hungarian Natural History Museum, Hungary, 2012.05~2012.05.
オーストラリア博物館, オーストラリア連邦昆虫コレクション(ANIC), オーストラリア連邦科学産業研究機構(CSIRO), Australia, 2012.03~2012.03.
チェンマイ大学, Thailand, 2011.11~2011.11.
Hungarian Natural History Museum, Hungary, 2011.07~2011.07.
INRA, France, 2011.06~2011.06.
ハワイ州農務省, UnitedStatesofAmerica, 2011.02~2011.02.
チェンマイ大学, Thailand, 2010.11~2010.11.
チェンマイ大学, Thailand, 2008.02~2008.02.
Plant Protection Institute, Hungarian Academy of Science, Hungary, 2007.06~2007.07.
Plant Protection Institute, Hungarian Academy of Science, Hungary, 2005.06~2005.07.
Plant Protection Institute, Hungarian Academy of Science, Hungary, 2004.06~2004.07.
Centre for Population Biology, Imperial College, University of Leiden, UnitedKingdom, Netherlands, 2003.01~2003.02.
National Center for Ecological Analysis and Synthesis, University of Connecticut, UnitedStatesofAmerica, UnitedStatesofAmerica, 1996.07~1997.05.
外国人研究者等の受入れ状況
2022.05~2023.04, 1ヶ月以上, UnitedStatesofAmerica, 日本学術振興会.
2022.09~2023.06, 1ヶ月以上, Humboldt University of Berlin, Germany, 日本学術振興会.
2019.08~2020.08, 1ヶ月以上, Plant Protection Research Institute of Egypt, Egypt.
2019.08~2020.08, 1ヶ月以上, Kafrelsheikh University, Egypt.
2019.12~2020.06, 1ヶ月以上, Al-Azhar University, Egypt, 外国政府・外国研究機関・国際機関.
2019.06~2019.06, 2週間未満, Agriculture Research Center, Field Crops Research Institute, Egypt, 外国政府・外国研究機関・国際機関.
2019.06~2019.06, 2週間未満, Kafrelsheikh University, Egypt, 外国政府・外国研究機関・国際機関.
2018.06~2021.06, 1ヶ月以上, Plant Protection Research Institute of Egypt, Egypt.
2016.09~2019.02, 1ヶ月以上, Kafrelsheikh University, Egypt.
2016.09~2019.02, 1ヶ月以上, Plant Protection Research Institute of Egypt, Egypt.
2016.08~2017.07, 1ヶ月以上, Autonomous University of Nuevo Leon, Mexico, 外国政府・外国研究機関・国際機関.
2015.04~2015.04, 2週間未満, INRA, France, .
2013.12~2013.12, 2週間未満, Rural Development Administration, National Institute of Horticultural and Herbal Science, Citrus Research Station, Korea, 外国政府・外国研究機関・国際機関.
2012.08~2012.08, 2週間未満, INRA, France, 外国政府・外国研究機関・国際機関.
2010.07~2010.07, 2週間未満, INRA, France, .
2011.01~2011.01, 2週間未満, Departamento de Biologia Geral Universidade Federal de Viçosa, Brazil, 外国政府・外国研究機関・国際機関.
2009.10~2009.10, Nederlands Instituut voor Ecologie, UnitedKingdom.
2009.08~2009.08, 2週間未満, Kasetsart University, Thailand.
2008.10~2008.10, 2週間未満, INRA, France, .
2007.11~2007.11, 2週間未満, University of Rochester, UnitedStatesofAmerica, 日本学術振興会.
2005.08~2006.05, 1ヶ月以上, INRA, France, 日本学術振興会.
2003.06~2003.06, 2週間未満, University of Minnesota, UnitedStatesofAmerica, 外国政府・外国研究機関・国際機関.
1999.06~1999.06, 2週間以上1ヶ月未満, Centre for Population Biology, Imperial College at Silwood Park, UnitedKingdom, 外国政府・外国研究機関・国際機関.
受賞
奨励賞, 個体群生態学会, 2005.10.
奨励賞, 日本応用動物昆虫学会, 2005.03.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2019年度~2021年度, 基盤研究(C), 代表, トランスクリプトームから紐解く可塑性・適応と体内外生物群集の関係.
2018年度~2020年度, 基盤研究(B), 分担, 侵入害虫キムネクロナガハムシの生殖を操作する新規共生細菌の伝播メカニズムの解明.
2017年度~2019年度, 基盤研究(B), 分担, マメ毒に対するマメゾウムシ類の適応分化:解毒機構と乾燥種子利用の遺伝的多様性.
2014年度~2016年度, 基盤研究(B), 分担, マメゾウムシ類の適応的多様化:種子毒耐性と乾燥種子利用によるジェネラリストの進化.
2013年度~2016年度, 基盤研究(C), 代表, 寄主植物シフトにおける遺伝子の発現・系統および相互作用生物の効果.
2011年度~2013年度, 基盤研究(B), 分担, マメゾウムシ類の寄主シフトによるジェネラリストの派生的進化:毒物質と乾燥種子利用.
2010年度~2012年度, 基盤研究(C), 代表, 系統的慣性と性選択の対立:昆虫における触角節数の集団内多型の進化維持機構.
2009年度~2011年度, 基盤研究(A), 分担, 侵入害虫キムネクロナガハムシの生物的防除の有効性における科学的検証.
2008年度~2010年度, 基盤研究(B), 分担, マメ科植物と種子捕食性昆虫における共進化の分子系統解析:毒性物質の効果.
2007年度~2009年度, 基盤研究(C), 代表, 相利共生的な種子食昆虫の多様性と保全.
2007年度~2009年度, 一般研究(B), 分担, 侵入害虫クリタマバチと天敵寄生蜂の導入が土着寄主・寄生蜂相の動態に及ぼす影響の解析.
2007年度~2009年度, 一般研究(B), 分担, 東アジア農林生態系におけるアリ類の種多様性とバイオインディケーターとしての利用.
2005年度~2007年度, 基盤研究(B), 分担, マメ科植物とその寄生/共生生物における共進化の系統対応解析.
2003年度~2005年度, 若手研究(B), 代表, 植食性昆虫における食性幅進化の解明:狭食・植物食から広食・共食いまで.
2003年度~2005年度, 基盤研究(A), 分担, 天敵の利用を中心としたわが国と東南アジアにおける蔬菜害虫の総合的害虫管理.
2000年度~2001年度, 奨励研究(A), 代表, 3栄養段階における植物の質と気象の影響−ミカン-カイガラムシ-2寄生蜂群集を例として−.
1996年度~1997年度, 特別研究員奨励費, 代表, マメゾウムシ-寄生蜂実験系における寄生相互作用の共進化ダイナミクスの解析.
日本学術振興会への採択状況(科学研究費補助金以外)
2022年度~2023年度, 特別研究員, 代表, 競争とナノ農薬からのストレス下における捕食寄生性昆虫の生態オミクスEco-omics of an insect parasitoid under stress from competition and nanopesticides.
2022年度~2022年度, 特別研究員, 代表, 生物化学的防除の促進:3栄養段階の貯蔵豆系におけるナノ農薬の最適化Enhancing bio-chemical control: nanopesticide optimization in a tritrophic stored bean system.
2007年度~2007年度, 国際学会等派遣事業, 代表, Evolutionary determinants of diet breadth of herbivorous insects.
2002年度~2002年度, 在外研究員(創造開発研究)旅費, 代表, 雑草の生物的防除に関する研究.
競争的資金(受託研究を含む)の採択状況
2015年度~2018年度, SATREPS, 分担, 大メコン圏の戦略作物、キャッサバの侵入病害虫対策に基づく持続的生産システムの開発と普及.
寄附金の受入状況
2015年度, 住友財団, 住友財団助成金/気候変化が生物的防除系構成種の遺伝子発現と適応進化に与える影響.
2001年度, 日本科学財団, 笹川科学研究助成金/日本における外来植物の自然保全型生物的防除のための基礎研究:イタチハギの種子食昆虫を例として.
1998年度, 住友財団, 住友財団助成金/マメ科種子をめぐる昆虫の種多様性.
1998年度, 吉田科学技術財団, 国際研究集会派遣研究者.
学内資金・基金等への採択状況
2021年度~2023年度, ダイバーシティ・スーパーグローバル教員育成研修(SENTAN-Q), 代表, 生態学・生物的防除学におけるダイバーシティの促進.
2018年度~2018年度, 研究補助者雇用支援(短期), 代表, 侵入害虫・導入天敵昆虫の侵入時の適応についての累代実験等.
2016年度~2016年度, 研究補助者雇用支援(短期), 代表, マメゾウムシの気候変化に対する適応についての累代実験等.
2016年度~2016年度, 九州大学研究活動基礎支援制度 国際学会派遣支援, 代表, Effect of atmospheric CO2 rise on population size, development and gene expression is different between populations of a seed beetle.
2013年度~2013年度, 教育研究プログラム・研究拠点形成プロジェクト(P&P), 代表, ホストジャンプの生態学的決定要因と遺伝子発現メカニズム.
2012年度~2012年度, 文部科学省科学技術振興調整「女性研究者養成システム改革加速」事業 国際学会派遣支援, 代表, Polymorphic number of antennal segments in a beetle population: sexually different response to artificial selection.
2011年度~2011年度, 文部科学省科学技術振興調整「女性研究者養成システム改革加速」事業 国際学会派遣支援, 代表, Linking community dynamics to population and individual behavior.
1999年度~2000年度, 九州大学教育研究プログラム・研究拠点プロジェクト, 分担, 昆虫の多様性と環境保全に関する総合的アプローチ.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。