九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
外本 伸治(ほかもと しんじ) データ更新日:2024.04.09

教授 /  工学研究院 航空宇宙工学部門 航行ダイナミクス


主な研究テーマ
複眼航法システムの研究開発
キーワード:視覚誘導システム,オプティックフロー,複眼システム
2012.04.
非ホロノミック拘束をもつ非線形システムの制御
キーワード:宇宙,非ホロノミック,テザー
2000.01.
自律探査システムの研究開発
キーワード:自律システム,軌道計画,脚機構,視覚誘導システム
2000.01.
宇宙ロボットの挙動解析と制御
キーワード:宇宙,ロボット,非ホロノミック,軌道計画
2000.01.
従事しているプロジェクト研究
Hayabusa 2 拡張ミッションプロジェクト
2022.07.
小型SAR衛星の高度化に向けた研究
2021.04.
MAVの屋内航法技術に関する研究
2013.10~2020.03.
月小型実験機(SLIM)に関する研究
2010.04, 代表者:澤井 秀次郎, JAXA.
Hayabusa 2 プロジェクト
2010.04~2022.06.
Hayabusa 光跡観測ミッション
2010.04~2011.03.
月惑星探査における不整地移動探査システムの研究
2008.04~2016.03.
惑星エアロブレーキに関する研究
2003.04~2007.03, 代表者:八坂哲雄, 九州大学.
月資源利用研究会
2005.04~2008.03.
ソーラーセイルプロジェクト
2004.04~2007.03, 代表者:川口淳一郎, JAXA.
研究業績
主要原著論文
1. Mohamed Shouman, Mai Bando, Shinji Hokamoto, Controllability Analysis of Propellant-Free Satellite Formation Flight, Journal of Guidance, Control, and Dynamics, 10.2514/1.G006035, 44, 12, 2214-2224, 2021.12, This paper presents a comprehensive analysis of the controllability for the relative dynamics of satellites using space environment forces. First, the constraints of the space environment forces are illustrated for circular orbits, and the integration of space environment forces for achieving full controllability is considered. Two approaches are used to estimate the controllability of various configurations of space environment forces. The first approach relies on controllability theory for linear continuous and discrete systems, including a derivation of a new linear formulation for solar radiation pressure with lower constraints. The second approach exploits extensive numerical simulations for controllability analyses of nonlinear dynamics models. The linear quadratic regulator is designed for different dynamics models of the space environment forces and implemented numerically for nonlinear dynamics using an anti-windup scheme with bounded control inputs. The numerical simulations demonstrate that the Lorentz forces and the differential atmospheric drag are more effective control forces in the low Earth orbits than the solar radiation pressure..
2. Yusei Sasaki, Tomohiro Ishizuka, Mai Bando, Shinji Hokamoto, Two-Input-Torque for Hopping Exploration Robot to Enhance Reachability under Microgravity, Transactions of Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 10.2322/tastj.19.719, 19, 5, 719-725, 2021.09.
3. Naoto Kobayashi, Mai Bando, Shinji Hokamoto, Daisuke Kubo, Guidelines for practical navigation systems based on wide-field-integration of optic flow, Asian Journal of Control, 10.1002/asjc.2363, 2021.10, [URL], This paper shows some guidelines to improve the estimation accuracy of a navigation system, which is based on wide-field-integration (WFI) of optic flow. Optic flow is a vector field of relative velocities obtained by photoreceptors in image sensors, and WFI of optic flow enables motion estimation robust by integrating wide range of optic flow. Since the system has several attractive features (small size, light weight, and low computation), it is applicable to an autonomous control system of micro air vehicles. However, due to some restrictions of real systems, WFI of optic flow theory should be applied while considering sensor arrangement for better estimation. In this paper, first an adequate number and adequate optical-axes of image sensors are investigated. Then, a new estimation system combining a gyro sensor with WFI of optic flow is discussed by numerical simulations. Finally, the essential effect for the number of cameras are verified in experiments..
4. Motoki Yamane, Mai Bando, Shinji Hokamoto, Formation Flying Trajectory Design based on Attractive Sets of Tschauner-Hempel Equations, Journal of Guidance, Control, and Dynamics, 43, 10, 1943-1951, 2020.10, [URL], This paper proposes a new method of optimal trajectory design for formation flying along an elliptical orbit. If the system is linear and a quadratic performance index is assumed, the optimal cost is quadratic form of the initial state. Attractive sets of optimal control are defined as level sets of the optimal cost based on linear quadratic regulator theory. They describe a set of all initial states to reach a desired state by a given cost. By solving the optimal control problem for the Tschauner-Hempel equations, the optimal cost is characterized by a time-periodic solution to the Riccati differential equation. This paper defines the attractive set for optimal formation reconfiguration problem and develops the procedures to draw the attractive
set. A novel method to depict the geometry of the attractive set of optimal control along a periodic orbit is proposed. Several applications to illustrate the theory are also given..
5. Yuki Akiyama, Mai Bando, Shinji Hokamoto, Station-keeping and formation flying based on nonlinear output regulation theory, Acta Astronautica, 10.1016/j.actaastro.2018.02.004, 153, 289-296, 2018.12, [URL], Station-keeping and formation flying along a libration point orbit in the circular restricted three-body problem are considered. In order to deal with the relative motion with respect to a reference trajectory, this paper extends our previous study which derives the station-keeping controller based on the output regulation theory. First the reference orbit of the chief satellite is represented as the output of an autonomous system called exosystem, assuming the reference orbit is given by a truncated Fourier series. For the formation flying, the relative trajectory of the deputy satellite with respect to the chief satellite is also represented by the output of an exosystem. Then the reference signal to be asymptotically tracked for the formation flying is obtained by the superposition of the two exosystems. The proposed controllers are applied and verified for the station-keeping and formation flying along a periodic orbit of the Sun-Earth L2 point..
6. Yuki Akiyama, Mai Bando, Shinji Hokamoto, Explicit form of station-keeping and formation flying controller for libration point orbits, Journal of Guidance, Control, and Dynamics, 10.2514/1.G002845, 41, 6, 1405-1413, 2018.07, [URL], A new station-keeping strategy based on nonlinear output regulation theory has been proposed for the periodic orbits in the circular restricted three-body problem. A Fourier series approximation was employed to generate the desired orbits, and then the output regulation theory for nonlinear systems was applied. The output regulation problem was solved in an analytical form. The proposed controller has been applied and verified in numerical simulations for the halo orbit of the sun–Earth L2 point. In the case that the reference orbit is the natural periodic orbit, the controller can approximate the optimal controller in the sense of minimizing the station-keeping cost. As an application of the proposed method, formation flying using circular orbits around the chief satellite has been worked out..
7. Hamidreza Nemati, Mai Bando, Shinji Hokamoto, Chattering Attenuation Sliding Mode Approach for Nonlinear Systems, Asian Journal of Control, 10.1002/asjc.1477, 19, 4, 1519-1531, 2017.07, [URL], This study introduces a new robust nonlinear control scheme based on the theory of nonsingular terminal sliding mode control (NTSMC). Since conventional NTSMC utilizes a discontinuous switching function, a significant flaw called chattering can occur. The main purpose of this study is to design a new switching function based upon Lyapunov stability in order to alleviate this drawback over time. There are many approaches to mitigate the chattering drawback in SMC such as utilizing a smooth approximation of the switching element, or employing higher order sliding mode control (HOSMC) strategy. However, the use of a continuous approximation affects the system's performance and a finite reaching time to the sliding manifold, and in HOSMC the estimation of high-order derivatives of states is usually difficult and it still exhibits chattering in the presence of parasitic dynamics. In this study by employing a new sliding manifold including a time function, the chattering is attenuated as well as keeping the robustness. Finally, a second-order nonlinear dynamical system subject to disturbance is simulated to highlight the validity and applicability of the proposed method..
8. Michael A. Shoemaker, Shinji Hokamoto, Comparison of integrated and nonintegrated wide-field optic flow for vehicle navigation, Journal of Guidance, Control, and Dynamics, 10.2514/1.59084, 36, 3, 710-720, 2013.05, [URL], Recent studies of vision-based navigation and guidance for robotic vehicles have been inspired by the biological systems found in flying insects. The wide-field integration of optic flow is one pre-existing method, in which the sensed optic flow is integrated along with sensitivity functions to mimic the action of directionally sensitive cells observed in some insects' visual systems. This study re-examines the wide-field integration method and reformulates the problem from a summation rather than an integral. This reformulation allows the wide-field integration measurement outputs to be directly compared with nonintegrated optic flow measurements. The method using nonintegrated optic flow measurements is shown to have some practical advantages, such as eliminating the need to define input sensitivity functions and having a measurement Jacobian that is easier to derive analytically. Also, the state estimates obtained with the nonintegrated method are proven to have minimum variance compared with those from the wide-field integration method. Numerical simulations of each method are shown for a vehicle maintaining level flight at constant altitude over a flat terrain..
9. 外本 伸治, 船迫 俊郎, 移動するマニフォールドを用いた平面宇宙ロボットのフィードバック制御, 日本ロボット学会誌, 10.7210/jrsj.25.745, 25, 5, 745-751, 2007.07, [URL], This study discusses a feedback control system for reorientation of a planar space robot, whose angular momentum conservation leads to a nonholonomic constraint. One of the previous works for such systems defines a radially isometric orientation and establishes a smooth time-invariant feedback controller, but the proposed controller suffers from slow rate of convergence for a desired configuration placed near its zero-holonomy curve. This paper proposes a moving manifold based on a virtual desired configuration, which approaches to a real desired configuration in accordance with the distance to the moving manifold. The derived controller is effective for any desired configuration, and the convergence speed is improved. Some numerical simulations verify its effectiveness of the controller..
10. 外本 伸治, 非ホロノミック性を利用した剛体衛星の軌道変更に関する研究, 日本航空宇宙学会論文集 = Journal of the Japan Society for Aeronautical and Space Sciences, 10.2322/jjsass.54.477, 54, 634, 477-484, 2006.11, [URL], This study deals with orbital transfer of a rigid satellite system into a specified orbit by using its inner force generated in the system. First, the governing equations of the system are shown, and their non-integrability is proven by applying a nonlinear control theory. Subsequently, it is also shown that the system is controllable except its pericenter and its apocenter in an elliptic orbit. Then, this paper proposes a two-step approach, combining a solution for a ‘chained’ system and numerical modification based on ‘motion planning.’ Finally, computational simulations verify that orbital transfer to a specified orbit is accomplished successfully by applying the proposed approach..
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
特許出願・取得
特許出願件数  1件
特許登録件数  0件
学会活動
所属学会名
American Institute of Aeronautics and Astonautics
日本航空宇宙学会
日本機械学会
計測自動制御学会
学協会役員等への就任
2022.02, Review Editor of Frontiers in Space Technology, .
2022.06~2024.03, 第34回 ISTS 地元組織委員会 委員, .
2021.03~2022.02, 日本航空宇宙学会 西部支部, 幹事.
2014.11~2021.10, IAC Astrodynamics session 委員, 幹事.
2019.04~2021.03, 機械学会 ロボメカ委員, 幹事.
2020.03~2021.02, 日本航空宇宙学会 西部支部, 支部長.
2019.03~2020.02, 日本航空宇宙学会 西部支部, 副支部長.
2018.01~2022.01, 日本航空宇宙学会 西部支部, 幹事.
2011.02~2015.02, 日本航空宇宙学会 西部支部, 幹事.
2010.03~2011.02, 日本航空宇宙学会 西部支部, 幹事.
2009.02~2011.02, 日本航空宇宙学会 西部支部, 常任幹事.
2006.01~2008.01, 計測自動制御学会 九州支部, 幹事.
2004.01~2007.01, 計測自動制御学会 九州支部, 事業委員.
2000.04~2003.03, 日本航空宇宙学会, 宇宙航行部門委員.
学会大会・会議・シンポジウム等における役割
2023.10.17~2023.10.20, 第67回 宇宙科学技術連合講演会, セッションオーガナイザー.
2023.07.24~2023.07.24, アストロダイナミクスシンポジウム, 座長(司会).
2023.07.24~2023.07.25, アストロダイナミクスシンポジウム, 世話人.
2023.06~2023.06.01, 34th ISTS, LOC委員(地元事業実行委員).
2023.06~2023.06, 34th ISTS, 座長(Chairmanship).
2023.03~2023.03, AeroResCon&MechResCon2023, chairman.
2022.11~2022.11, 第66回 宇宙科学技術連合講演会, 座長(司会).
2022.11~2021.11, 第66回 宇宙科学技術連合講演会, セッションオーガナイザー.
2022.07.26~2022.07.26, アストロダイナミクスシンポジウム, 座長(司会).
2022.04~2022.10.08, AerospaceForum 2022, Committee member.
2022.07.25~2022.07.26, アストロダイナミクスシンポジウム, 世話人.
2021.11~2021.11.01, 第65回 宇宙科学技術連合講演会, 座長(司会).
2021.11~2021.11.01, 第65回 宇宙科学技術連合講演会, セッションオーガナイザー.
2021.07.26~2021.07.27, アストロダイナミクスシンポジウム, 座長(司会).
2021.07.26~2021.07.27, アストロダイナミクスシンポジウム, 世話人.
2020.10~2020.10, 第64回 宇宙科学技術連合講演会, 座長(司会).
2020.10~2020.10, 第64回 宇宙科学技術連合講演会, セッションオーガナイザー.
2019.11~2019.11, 日本航空宇宙学会西部支部講演会, 座長(Chairmanship).
2019.11~2019.11, 第63回 宇宙科学技術連合講演会, セッションオーガナイザー.
2019.10~2019.10, International Astronautical Congress, Chairman.
2019.06~2019.06, 32nd ISTS, 座長(Chairmanship).
2018.10~2018.10, 第62回 宇宙科学技術連合講演会, セッションオーガナイザー.
2018.09~2018.09, International Astronautical Congress, Chairman.
2018.07~2018.07, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2017.10~2017.10, 第61回 宇宙科学技術連合講演会, セッションオーガナイザー.
2017.09~2017.09, International Astronautical Congress, Chairman.
2017.06~2017.06, 31st ISTS, 座長(Chairmanship).
2017.03~2017.03, マルチシンポジウム, 座長(Chairmanship).
2016.09~2016.09, International Astronautical Congress.
2016.09~2016.09, 第60回 宇宙科学技術連合講演会, セッションオーガナイザー.
2015.10~2015.10, International Astronautical Congress.
2015.10~2015.10, 宇宙科学技術連合講演会, 座長(Chairmanship),セッションオーガナイザー.
2015.07~2015.07, 30th ISTS, 座長(Chairmanship).
2014.11~2014.11, 宇宙科学技術連合講演会, 座長(Chairmanship).
2014.07~2014.07, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2014.03~2014.03, マルチシンポジウム, 座長(Chairmanship).
2013.11~2013.11, 宇宙科学技術連合講演会, 座長(Chairmanship).
2013.07~2013.07, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2013.06~2013.06, 29th ISTS, 座長(Chairmanship).
2012.11~2012.11, 宇宙科学技術連合講演会, 司会(Moderator).
2012.09~2012.09, The Sixth KAIST-Kyushu University Joint Workshop, 司会(Moderator).
2012.07~2012.07, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2011.11~2011.11, 宇宙科学技術連合講演会, 司会(Moderator).
2011.11~2011.11, 日本航空宇宙学会西部支部講演会, 座長(Chairmanship).
2011.06~2011.06, 28th ISTS, 司会(Moderator).
2009.12~2009.12, KAIST-KU Symposium on Aerospace Engineering, 司会(Moderator).
2009.07~2009.07, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2009.05~2009.05, 27th ISTS, 司会(Moderator).
2008.08~2008.08, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2007.07~2007.07, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2006.07~2006.07, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2005.07~2005.07, アストロダイナミクスシンポジウム, 座長(Chairmanship).
2017.04~2018.03, 68th International Astronautical Congress, Astrodynamics Committee member.
2016.01~2016.12.01, 67th International Astronautical Congress, Astrodynamics Committee member.
2016.09~2016.09.01, 第60回宇宙科学技術連合講演会, セッションオーガナイザー.
2016.09~2016.09, 日本機械学会2016年度年次大会, 実行委員.
2015.10~2015.10, 第59回宇宙科学技術連合講演会, セッションオーガナイザー.
2014.11~2014.11, 第58回宇宙科学技術連合講演会, セッションオーガナイザー.
2015.01.01~2015.12.31, 66th International Astronautical Congress, Astrodynamics Committee member.
2014.04.01~2015.12.01, 30th International Symposium on Space Technology and Sciences, d-セッション委員長.
2012.06.01~2013.07.01, 29th International Symposium on Space Technology and Sciences, 実行委員.
2011.06~2011.11, 28th International Symposium on Space Technology and Sciences, 実行委員.
2010.09~2010.09, 18th IFAC Symposium on Automatic Control in Aerospace, 実行委員.
2009.05~2009.05, ロボメック2009, 実行委員(チュートリアル担当).
学会誌・雑誌・著書の編集への参加状況
2009.04~2013.03, Journal of Mathematics and Engineering, Science and Aerospace, 国際, 編集委員.
2008.04~2010.03, 日本機械学会論文集校閲委員, 国内, 査読委員.
2011.04~2013.03, Online Journal of the Special Issue of the 28th ISTS, 国際, 編集委員.
2012.04~2014.03, 日本機械学会論文集校閲委員, 国内, 査読委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2023年度    
2022年度    
2021年度      
2020年度   41    45 
2019年度   49    57 
2018年度   67    69 
2017年度   63    69 
2016年度 13    58    71 
2015年度 14    54    68 
2014年度 139    141 
2013年度      
2012年度      
2011年度 10      11 
2010年度  
2009年度    
2008年度    
2007年度    
2006年度      
2005年度      
2004年度    
2003年度      
2002年度      
その他の研究活動
外国人研究者等の受入れ状況
2005.10~2006.03, 1ヶ月以上, 北京航空航天大学, China, 学内資金.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2020年度~2023年度, 基盤研究(B), 代表, 昆虫複眼システムに基づく完全自律型ドローンの開発と3次元観測ネットワークの構築.
2015年度~2017年度, 挑戦的萌芽研究, 代表, 複眼視覚航法を用いたロバスト自律航法システムの開発.
2005年度~2006年度, 一般研究(C), 代表, ソーラーセイル姿勢/軌道制御系の実験的検証と設計に関する基礎研究.
2000年度~2002年度, 基盤研究(B), 代表, 全方向型惑星探査ローバーの開発とその挙動解析・制御に関する研究.
日本学術振興会への採択状況(科学研究費補助金以外)
1999年度~1999年度, 特定国派遣研究者, 多重テザー衛星システムのダイナミクスと制御.
共同研究、受託研究(競争的資金を除く)の受入状況
2021.04~2024.03, 代表, 小型SAR衛星の高度化に向けた姿勢制御系の開発.
2018.11~2019.03, 代表, レンズを広角化したPX4Flowセンサ情報を用いたオプティックフローWFI法の研究.
2017.09~2018.02, 代表, オプッティクフローWFI法のMAV飛行制御への適用のためのPX4Flowセンサ情報処理技術の研究.
2016.08~2017.03, 代表, オプティックフローWFI法のMAV飛行制御への適用のための処理技術の研究.
2015.09~2016.03, 代表, オプティカルフロー広域統合法を用いた無人航空機の飛行制御技術の研究.
2014.07~2015.03, 代表, MAVの屋内航法技術に関する研究.
2013.10~2014.03, 代表, MAVの屋内航法技術に関する研究.
2010.04~2011.03, 代表, 光学観測を用いたはやぶさカプセル大気再突入軌道決定.
1997.04~1999.03, 無重力環境下での柔軟マニピュレータ系の挙動と制御に関する研究.
寄附金の受入状況
2016年度, 積水化学, 自然に学ぶものづくり 研究助成プログラム 「昆虫の複眼システムに学ぶ屋内自律飛行における障害物回避」.
学内資金・基金等への採択状況
2010年度~2010年度, 社会連携事業, 代表, 工・農技術融合による有機農業の高度化(アイガモロボットの開発).

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。