1. |
Nao Sato and Toshiya Samejima, Vibration analysis of piano strings involving dynamics of hammer shanks, Acoust. Sci. & Tech., 44, 3, in press, 2023.05. |
2. |
Yuya Oguchi and Toshiya Samejima, Physical modeling of Japanese temple bells using thin cylindrical shells involving dynamics of clappers Shumoku, Acoust. Sci. & Tech., 44, 3, in press, 2023.05. |
3. |
Shintaro Sakai and Toshiya Samejima, Vibro-acoustic analysis of cellos using the finite and boundary element methods and its application to studies on the effects of endpin properties, Acoust. Sci. & Tech., 44, 3, in press, 2023.05. |
4. |
Toshiya Samejima, Vibration analysis of a bowed string involving dynamics of a soundbox and neck and its application to a Chinese traditional bowed string instrument “Erhu”, Acoust. Sci. & Tech., 44, 3, in press, 2023.05. |
5. |
Fukiko Ishida and Toshiya Samejima, Physical modeling of wind instruments involving three-dimensional radiated sound fields, Acoust. Sci. & Tech., 44, 3, in press, 2023.05. |
6. |
T. Nagakura and T. Samejima, Transaural system using directional and median-plane-arranged loudspeakers with robustness to listener's lateral misalignment, J. Acoust. Soc. Jpn.. |
7. |
Shu Sekiguchi and Toshiya Samejima, Attempt to create unconventional tones of snare drums using numerical analysis, Acoust. Sci. & Tech. (Acoustical Letters), 43, 2, 2022.03. |
8. |
Toshiya Samejima, Nonlinear physical modeling sound synthesis of cymbals involving dynamics of washers and sticks/mallets, Acoust. Sci. & Tech., 42, 6, 2021.11. |
9. |
Toshiya Samejima, Karen Kobayashi and Shu Sekiguchi, Transaural system using acoustic contrast as its objective function, Acoust. Sci. & Tech. (Acoustical Letters), 42, 4, 2021.07. |
10. |
T. Samejima, Vibration analysis of a bowed string involving dynamics of a violin bow, J. Acoust. Soc. Jpn.. |
11. |
T. Samejima, S. Takahashi and Y. Araki, Numerical analysis of two-dimensional sound fields with a multidomain spectral method in generalized curvilinear coordinates, J. Acoust. Soc. Jpn.. |
12. |
K. Kita and T. Samejima, Realization of a high-order delta-sigma modulator based on sliding mode control theory, J. Acoust. Soc. Jpn.. |
13. |
Yozo Araki, Toshiya Samejima, Introduction of generalized curvilinear coordinates to spectral nodal Galerkin methods for irregular-shaped two-dimensional sound field analysis, Acoust. Sci. & Tech. (Acoustical Letters), 39, 1, 2018.01. |
14. |
Yusuke Kadowaki, Toshiya Samejima, Nonlinear distortion reduction of an electrodynamic loudspeaker by using model-following control theory, Acoust. Sci. & Tech. (Acoustical Letters), 38, 4, 2017.07. |
15. |
T. Samejima, S. Takahashi and Y. Araki, Numerical analysis of two-dimensional sound fields with a spectral method in generalized curvilinear coordinates, J. Acoust. Soc. Jpn.. |
16. |
Y. Araki and T. Samejima, Design of membranophones based on vibro-acoustic analysis, J. Acoust. Soc. Jpn.. |
17. |
Toshiya Samejima, Risa Fukuda, Vibration analysis of a musical drum head under nonuniform density and tension using a spectral method, Acoust. Sci. & Tech., 37, 6, 2016.11. |
18. |
T. Samejima, Fourier-expansion hybrid-type infinite element for finite element analysis of nonaxisymmetric sound fields in axisymmetric unbounded domains, J. Acoust. Soc. Jpn.. |
19. |
Yozo Araki, Toshiya Samejima, Fourier series expansion type of spectral nodal Galerkin method for vibration analysis of cylindrical shells: Formulation and trial calculation, Acoust. Sci. & Tech. (Acoustical Letters), 37, 5, 2016.09. |
20. |
Yozo Araki, Toshiya Samejima, Fourier series expansion type of spectral collocation method for vibration analysis of cylindrical shells, Acoust. Sci. & Tech., 37, 5, 2016.09. |
21. |
Y. Araki and T. Samejima, Spectral method for vibration analysis of circular stretched plates, J. Acoust. Soc. Jpn.. |
22. |
Y. Noda and T. Samejima, Active control of acoustic energy in a sound field by gain scheduling control theory, J. Acoust. Soc. Jpn.. |
23. |
Y. Kida and T. Samejima, Modal method integrated with Kirchhoff-Huygens formula for calculating multiple acoustic scattering by multiple obstacles, J. Acoust. Soc. Jpn.. |
24. |
Kenji Kita, Toshiya Samejima, Delta-sigma modulator with switching loop filter based on the linear gain, Acoust. Sci. & Tech. (Acoustical Letters), 34, 5, 351-353, 2013.09. |
25. |
K. Kita, T. Fukumoto and T. Samejima, Design approach of Delta-Sigma Modulator based on μ-synthesis, J. Acoust. Soc. Jpn.. |
26. |
Y. Kida, T. Samejima and K. Morikuni, Evaluation of a semi-analytical method for calculating multiple acoustic scattering fields, Acoust. Sci. & Tech. (Acoustical Letters), 33, 1, 64-67, 2012.01. |
27. |
T. Samejima, Y. Kida and H. Saito, A modal method integrated with Kirchhoff-Huygens formula for acoustic scattering by an obstacle, J. Acoust. Soc. Jpn.. |
28. |
T. Samejima, Y. Sasaki, I. Taniguchi and H. Kitajima, Robust transaural sound reproduction system based on feedback control, Acoust. Sci. & Tech., 31, 4, 251-259, 2010.07. |
29. |
Y. Sasaki and T. Samejima, Method of multiple-input multiple-output system identification of a sound field based on experimental modal analysis, J. Acoust. Soc. Jpn.. |
30. |
Y. Sasaki and T. Samejima, Active control of acoustic energy in a sound field by finite element method and sliding mode control theory, J. Acoust. Soc. Jpn.. |
31. |
T. Samejima and K. Miyazaki, Active damping control of sound fields through finite element modeling and direct rate feedback, J. Acoust. Soc. Jpn.. |
32. |
T. Samejima and T. Mitsui, H∞ active minimization of acoustic energy in a sound field through common acoustical pole and zero modeling, Acoust. Sci. & Tech., Vol.26, No.5, 423-431, 2005.09. |
33. |
T. Samejima and S. Miyashita Menbrane/thin elastic plate matrix of modal expansion type for acoustic finite element analysis, J. Acoust. Soc. Jpn.. |
34. |
T. Samejima, A method of vibro-acoustic analysis of enclosed sound fields with membranes and thin elastic plates, J. Acoust. Soc. Jpn.. |
35. |
T. Samejima, A state feedback electro-acoustic transducer for active control of acoustic impedance, J. Acoust. Soc. Am., Vol.113, No.3, 1483-1491, 2003.03. |
36. |
T. Samejima and D. Yamamoto, Active modal control of sound fields by finite element modeling and H∞ control theory, Acoust. Sci. & Tech., Vol.23, No.6, 313-322, 2002.12. |
37. |
T. Samejima, Modifying modal characteristics of sound fields by state feedback control, J. Acoust. Soc. Am., Vol.110, No.3, 1408-1414, 2001.09. |
38. |
T. Samejima and D. Yamamoto, Active control of a sound field with a state feedback electro-acoustic transducer, Acoust. Sci. & Tech., Vol.22, No.2, 135-140, 2001.04. |
39. |
T. Samejima, K. Hirate, and M. Yasuoka, State-space expression of a sound field by theoretical or experimental identification of it, J. Archit. Plann. Eng., AIJ. |
40. |
T. Samejima and M. Yasuoka, Active suppression of reverberation in a sound field through state feedback control, J. Acoust. Soc. Jpn.. |
41. |
T. Samejima, K. Hirate, and M. Yasuoka, Optimum design of room shape and arrangement of absorptive patches by evaluating the distribution of poles of a transfer function in an acoustic system, J. Archit. Plann. Eng., AIJ. |