九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
内田 竜也(うちだ たつや) データ更新日:2023.10.03

准教授 /  基幹教育院 自然科学実験系部門 教育実践部・自然科学部門


主な研究テーマ
環境調和を思考した効率的有機合成法の開発
キーワード:不斉反応 触媒反応 空気酸化 アミノ化
2013.10~2013.10.
従事しているプロジェクト研究
JSTさきがけ
2022.10~2026.03, 代表者:内田 竜也, 九州大学基幹教育院, JST.
ACT-C先導的物質変換領域
2012.10~2017.03, 代表者:香月 勗, 九大I2CNER, 化学技術振興機構.
基盤研究(A)
2011.04~2015.03, 代表者:香月勗.
研究業績
主要原著論文
1. Tatsuya Uchida, Development of Catalytic Site-selective C–H Oxidation, The Chemical Record, e202300156, 2023.06, Direct C−H bond oxygenation is a strong and useful tool for the construction of oxygen functional groups. After Chen and White's pioneering works, various non-heme-type iron and manganese complexes were introduced, leading to strong development in this area. However, for this method to become a truly useful tool for synthetic organic chemistry, it is necessary to make further efforts to improve site-selectivity, and catalyst durability. Recently, we found that non-heme-type ruthenium complex cis-1 presents efficient catalysis in C(sp3)−H oxygenation under acidic conditions. cis-1-catalysed C−H oxygenation can oxidize various substrates including highly complex natural compounds using hypervalent iodine reagents as a terminal oxidant. Moreover, the catalyst system can use almost stoichiometric water molecules as the oxygen source through reversible hydrolysis of PhI(OCOR)2. It is a strong tool for producing isotopic-oxygen-labelled compounds. Moreover, the environmentally friendly hydrogen peroxide can be used as a terminal oxidant under acidic conditions..
2. Keigo Hashimoto, Naoki Watari, Tatsuya Uchida, Asymmetric oxyamination by mean of ruthenium-catalyzed N-Acyl nitrene transfer reaction to olefins, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2023.154542, 123, 154542, 2023.06, We found that (OC)ruthenium-salen complex 2d, bearing a 3,5-dichlorophenyl group at the C2″ position on the binaphthyl framework, catalyzed direct oxazoline formation from 4-methyl-1,2-dihydronaphthalenes and 3-methyl-1H-indenes using 3-(3-bromophenyl)-1,4,2-dioxazol-5-one 3f as the nitrene source via direct oxyamination through the putative N-acyl ruthenium(nitrene) intermediate with almost complete chemoselectivity and good to high enantioselectivity..
3. Yuki Yamakawa, Takashi Ikuta, Hiroki Hayashi, Keigo Hashimoto, Ryoma Fujii, Kyohei Kawashima, Seiji Mori, Tatsuya Uchida, Tsutomu Katsuki, Iridium(III)-Catalyzed Asymmetric Site-Selective Carbene C–H Insertion during Late-Stage Transformation, The Journal of Organic Chemistry, 10.1021/acs.joc.2c00470, 87, 10, 6769-6780, 2022.05, C–H functionalization has recently received considerable attention because C–H functionalization during the late-stage transformation is a strong and useful tool for the modification of the bioactive compounds and the creation of new active molecules. Although a carbene transfer reaction can directly convert a C–H bond to the desired C–C bond in a stereoselective manner, its application in late-stage material transformation is limited. Here, we observed that the iridium–salen complex 6 exhibited efficient catalysis in asymmetric carbene C–H insertion reactions. Under optimized conditions, benzylic, allylic, and propargylic C–H bonds were converted to desired C–C bonds in an excellent stereoselective manner. Excellent regioselectivity was demonstrated in the reaction using not only simple substrate but also natural products, bearing multiple reaction sites. Moreover, based on the mechanistic studies, the iridium-catalyzed unique C–H insertion reaction involved rate-determining asynchronous concerted processes..
4. Doiuchi, Daiki; Uchida, Tatsuya, Catalytic Highly Regioselective C–H Oxygenation Using Water as the Oxygen Source: Preparation of 17O/18O-Isotope-Labeled Compounds, Organic Letters, 10.1021/acs.orglett.1c02812, 23, 7301-7305, 2021.09, A water molecule is one of the ideal oxygen sources in organic synthesis. If a theoretical stoichiometric amount of water can be activated to the reactive intermediates such as metal(oxo) species and inserted to C–H bond, the C¬–H oxidation would be an efficient and useful tool for the oxygen functionalization, especially isotopically oxygen-labeled functional groups. Herein, we found that the oxygen atom of water is activated to iodosylbenzene derivatives via reversible hydrolysis of iodobenzene(dicarboxylate) and can be used to the oxygen source for non-heme-type ruthenium(bpga)-catalyzed site-selective C–H oxygenation. Under that Ru(bpga)/PhI(OOCR)2/H2O system, sterically less bulky methinic and methylenic C–H bonds in various compounds, even complicated natural products, can be converted to desired oxygen functional groups in a site-selective manner. Using this method, oxygen-isotope labeled compounds such as D-[3-17O/18O]-mannose can be prepared in a multi-gram scale..
5. Masaki Yoshitake, Hiroki Hayashi, Tatsuya Uchida*, Ruthenium-Catalyzed Asymmetric N-Acyl Nitrene Transfer Reaction: Imidation of Sulfide, Organic letters, 10.1021/acs.orglett.0c01373, 22, 10, 4021-4025, 2020.05, [URL], (Aqua)ruthenium(salen) complex 1c achieved good to high chemo- and enantioselective oxidative cross-coupling of arenols. The catalytic system can be used to selectively produce C1-symmetric bis(arenol)s from the combination of C3- and C7-substituted 2-naphthols or phenols even when there is no significant difference in oxidation potential between the cross-coupling partners. This unique cross-selectivity is dominated by steric rather than electronic effects of the arenols and can be controlled by chemoselective single-electron oxidation and oxidative carbon-carbon bond formation..
6. Takuya Oguma, Daiki Doiuchi, Chisaki Fujitomo, Chungsik Kim, Hiroki Hayashi, Tatsuya Uchida, Tsutomu Katsuki, Iron-Catalyzed Asymmetric Inter- and Intramolecular Aerobic Oxidative Dearomatizing Spirocyclization of 2-Naphthols, Asian Journal of Organic Chemistry, 10.1002/ajoc.201900602, 9, 3, 404-415, 2020.03, [URL], Highly chemo- and enantioselective inter- and intra-molecular oxidative dearomatizing spirocyclization of 1-alkyl-2-naphthols with O2 as the hydrogen acceptor was achieved using an iron catalyst. In the iron complex 1-catalyzed reaction, 1-methyl-2-naphthols 2 in the presence of phenol derivatives as the nucleophile was selectively oxidized, producing the spirocyclic ketones with good to high enantioselectivities via a tandem strategy. Pre-synthesized 1,1′-methylbis(arenol)s 6 and 7, intermediates of the tandem strategy were also converted to the desired products with chemo- and enantioselectivity..
7. Hiroki Hayashi, Takamasa Ueno, Chungsik Kim, Tatsuya Uchida, Ruthenium-Catalyzed Cross-Selective Asymmetric Oxidative Coupling of Arenols, Organic letters, 10.1021/acs.orglett.0c00048, 22, 4, 1469-1474, 2020.02, [URL], (Aqua)ruthenium(salen) complex 1c achieved good to high chemo- and enantioselective oxidative cross-coupling of arenols. The catalytic system can be used to selectively produce C1-symmetric bis(arenol)s from the combination of C3- and C7-substituted 2-naphthols or phenols even when there is no significant difference in oxidation potential between the cross-coupling partners. This unique cross-selectivity is dominated by steric rather than electronic effects of the arenols and can be controlled by chemoselective single-electron oxidation and oxidative carbon-carbon bond formation..
8. Daiki Doiuchi, Tatsuya Nakamura, Hiroki Hayashi, Tatsuya Uchida, Non-Heme-Type Ruthenium Catalyzed Chemo- and Site-Selective C−H Oxidation, Chemistry - An Asian Journal, 10.1002/asia.202000134, 2020.01, [URL], Herein, we developed a Ru(II)(BPGA) complex that could be used to catalyze chemo- and site-selective C−H oxidation. The described ruthenium complex was designed by replacing one pyridyl group on tris(2-pyridylmethyl)amine with an electron-donating amide ligand that was critical for promoting this type of reaction. More importantly, higher reactivities and better chemo-, and site-selectivities were observed for reactions using the cis-ruthenium complex rather than the trans-one. This reaction could be used to convert sterically less hindered methyne and/or methylene C−H bonds of a various organic substrates, including natural products, into valuable alcohol or ketone products..
9. KIM CHUNG SIK, Takuya Oguma, Chisaki Fujitomo, TATSUYA UCHIDA, Tsutomu Katsuki, Iron-Catalyzed Asymmetric Aerobic Oxidative Dearomatizing Spirocyclization of Methylenebis(arenol)s, Chemistry Letters, 10.1246/cl.160680, 45, 1262-1264, 2016.08, Iron(salan) complexes are efficient catalysis in intramolecular aerobic oxidative dearomatizing spirocyclization of methylenebis(arenol)s, which was prepared from salicyl akdehydes and phenols with simple microwave irradiation. Under the iron-catalyzed aerobic oxidation conditions, methylenebis(arenol)s converted to the corresponding spirocyclic compounds with good to high enantioselectivity (up to 87% ee)..
10. Hirotaka Mizoguchi, TATSUYA UCHIDA, Tsutomu Katsuki, Ruthenium-Catalyzed Oxidative Kinetic Resolution of Unactivated and Activated Secondary Alcohols with Air as the Hydrogen Acceptor at Room Temperature., ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 10.1002/anie.201310426, 53, 3178-3182, 2014.02, Enantiopure alcohols are versatile building blocks for asymmetric synthesis and the kinetic resolution (KR) of racemic alcohols is a reliable method for preparing them. Although many KR methods have been developed, oxidative kinetic resolution (OKR), in which dioxygen is used as the hydrogen acceptor, is the most atom-efficient. Dioxygen is ubiquitous in air, which is abundant and safe to handle. Therefore, OKR with air has been intensively investigated and the OKR of benzylic alcohols was recently achieved by using an Ir catalyst without any adjuvant. However, the OKR of unactivated alcohols remains a challenge. An [(aqua)Ru- (salen)] catalyzed OKR with air as the hydrogen acceptor was developed, in which the aqua ligand is exchanged with alcohol and the Ru complex undergoes single electron transfer to dioxygen and subsequent alcohol oxidation. This OKR can be applied without any adjuvant to activated and unactivated alcohols with good to high enantioselectivity. The unique influence of substrate inhibition on the enantioselectivity of the OKR is also described..
11. Yota Nishioka, TATSUYA UCHIDA, Tsutomu Katsuki, Enantio- and Regioselective Intermolecular Benzylic and Allylic C-H Bond Amination, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 10.1002/anie.201208906, 52, 6, 1739-1742, 2013.01, We designed new ruthenium catalysts that were composed of ruthenium(II) ion, apical CO ligand, and highly enantioselective salen ligand and could for the first time achieve highly enantioselective sulfimidation, aziridination, and C-H amination using azide compounds as the nitrene precursors. Catalytic activity, stereoselectivity, and regioselectivity of the ruthenium catalysts were remarkably improved by an appropriate tuning of salen ligand..
12. Yasuaki Fukunaga, TATSUYA UCHIDA, Yutaro Ito, Tsutomu Katsuki, Ru(CO)-salen-Catalyzed Synthesis of Enantiopure Aziridinyl Ketones and Formal Asymmetric Synthesis of (+)-PD 128907, ORGANIC LETTERS, 10.1021/ol302095r, 14, 17, 4658-4661, 2012.09, Aziridination of vinyl ketones using SESN3 in the presence Ru(CO)-salen complex 1 provides the enantiopure aziridinyl ketones that can serve as useful chiral building blocks. A formal asymmetric synthesis of (þ)-PD 128907 was achieved in an eight-step sequence via aziridination..
13. Shota Koya, Yota Nishioka, Hirotaka Mizoguchi, Tatsuya Uchida, Tsutomu Katsuki, Asymmetric Epoxidation of Conjugated Olefins with Dioxygen, Angew. Chem. Int. Ed., 10.1002/anie.201201848, 51, 33, 8243-8246, 2012.07, A complex situation: Asymmetric epoxidation of conjugated olefins was achieved at room temperature using ruthenium complex 1 as the catalyst and air as the oxidant to give epoxides in up to 95 % ee. When the product was acid sensitive, the reaction was carried out at 0 °C under oxygen..
14. Chungsik Kim, Tatsuya Uchida, Tsutomu Katsuki, Asymmetric olefin aziridination using a newly designed Ru(CO)(salen) complex as the catalyst, Chem. Commun, 10.1039/c2cc32997b, 48, 7188–7190, 2012.04, Highly enantioselective and good to high-yielding aziridination of conjugated and non-conjugated terminal olefins and cyclic olefins was achieved using a newly designed Ru(CO)(salen) complex as the catalyst in the presence of SESN3 under mild conditions..
15. Masami Ichinose, Hidehiro Suematsu, Yoichi Yasutomi, Yota Nishioka, Tatsuya Uchida, and Tsutomu Katsuki, Enantioselective Intramolecular Benzylic CーH Bond Amination:
Efficient Synthesis of Optically Active Benzosultams, Angew. Chem. Int. Ed, 10.1002/anie.201101801, 50, 9884-9887, 2011.09.
16. Tanaka, H., Nishikawa, H., Uchida, T. & Katsuki, T., , Photopromoted Ru-Catalyzed Asymmetric Aerobic Sulfide Oxidation and Epoxidation Using Water as a Proton Transfer Mediator., J. Am. Chem. Soc, 10.1021/ja104184r, 132, 34, 12034-12041, 2010.05, 著者等は、光学活性なルテニウム(ニトロシル)サレン錯体が、室温、常圧の温和な条件下で還元剤を用いること無しに、分子状酸素を酸化剤とするオレフィンの不斉エポキシ化、スルフィドの不斉スルホキシ化に成功した。可視光照射条件下において、錯体2を触媒とすることで不斉スルホキシ化が最高98% eeのエナンチオ選択性にて、また錯体3を用いることにて不斉エポキシ化が76-92% eeの不斉収率にて目的とする酸化生成物が得られた。
本反応では、反応系中に存在する水分子が、ルテニウムイオンに配位し、プロトン供給源として分子状酸素活性化の一翼を担い、また、消費された水は反応サイクル中で再生するものと考えられる。.
17. Mizoguchi Takahiro, Ishida Koichi, Uchida Tatsuya, Katsuki Tsutomu , Ru-salen complex catalyzed chemoselective aerobic oxidation of primary alcohols to aldehydes, Tetrahedron Letters, 2009.06.
18. Tatsuya Uchida, Tstomu Katsuki, Construction of a new type of chiral bidentate NHC ligands: copper-catalyzed asymmetric conjugate alkylation, Tetrahedron Letters, 2009.06.
19. Hidehiro Suematsu, Shigefumi Kanchiku, Tatsuya Uchida, Tsutomu Katsuki, Construction of aryliridium-salen complexes
Enantio- and cis-selective cyclopropanation of conjugated and nonconjugated olefins, Journal of the American Chemical Society, 10.1021/ja802561t, 130, 31, 10327-10337, 2008.08, [URL], Two stable and optically active iridium-salen complexes were synthesized by introducing a tolyl or phenyl ligand at the apical position, respectively, via the SEAr mechanism, and they were found to be efficient catalysts for cis-selective asymmetric cyclopropanation. The scope of the cyclopropanation was wide, and the reactions of not only conjugated mono-, di-, and trisubstituted olefins but also nonconjugated terminal olefins proceeded with high enantio- and cis-selectivity, even in the presence of a functional group such as an ether or ester. The utility of this cyclopropanation was demonstrated by a short step synthesis of 8-[(1R,2S)-2-hexylcyclopropyl]octanoate, isolated from Escherichia coli B-ATCC 11303, using the reaction as the key step..
20. Shigefumi Kanchiku, Hidehiro Suematsu, Kazuhiro Matsumoto, Tatsuya Uchida, Tsutomu Katsuki, Construction of an aryliridium-salen complex for highly cis- and enantioselective cyclopropanations, Angewandte Chemie - International Edition, 10.1002/anie.200604385, 46, 21, 3889-3891, 2007.06, [URL], (Chemical Equation Presented) Ringing the changes: Iridium(lll)-salen complexes 1 bearing a σ-coordinated aryl ligand (L = CH3C 6H4, C6H5) at the apical position are found to efficiently catalyze the cis- and enantioselective cyclopropanation of mono- and disubstituted olefins (see scheme)..
21. Omura Kazuhumi, Murakami Masakazu, Uchida Tatsuya, Katsuki Tsutomu, Enantioselective aziridination and amination using p-toluenesulfonyl azide in the presence of Ru(salen)(CO) complex, CHEMISTRY LETTERS, 32, 4, 354-355, 32巻4号、p. 354-355, 2003.04.
主要総説, 論評, 解説, 書評, 報告書等
1. Daiki Doiuchi, Tatsuya Uchida, Recent Strategies in Non-Heme-Type Metal Complexes-Catalyzed Site-, Chemo-, and Enantioselective C–H Oxygenations, Synthesis, 2021.06, C–H bonds are ubiquitous and abundant in organic molecules. If such C–H bonds can be converted to the desired functional groups in a site-, chemo-, diastereo-, and enantio-selective manner, the functionalization of C–H bonds would be an efficient tool for the step-, atom- and redox-economic organic synthesis. C–H oxidation is one of a typical C–H functionalization, to afford hydroxy and carbonyl groups, which are essential key functional groups in organic synthesis and biological chemistry, directly. Recently, significant developments have been made using non-heme-type transition metal catalysts. Oxygen functional groups can be introduced to not only simple hydrocarbons but also complicated natural products. In this paper, the recent developments, during the last fourteen years, of non-heme-type complex-catalyzed C–H oxidations are reviewed. .
2. Hayashi, Hiroki; Uchida, Tatsuya, Nitrene Transfer Reactions for Asymmetric C-H Amination: Recent Development, EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 10.1002/ejoc.201901562, 2020.02, [URL], C-H bonds are ubiquitous and abundant in organic molecules. If C-H bonds could be directly converted to desired functional groups in a chemo-, site-, and stereoselective manner, C-H functionalization would be a strong and useful tool for organic synthesis. Recent developments in catalytic and enzymatic chemistry have achieved highly sustainable and selective nitrene C-H insertion. Initially, C-H amination was inspired by model studies on enzymatic oxidation and used iminoiodinanes, nitrogen analogs of iodosobenzene, as nitrene precursors. Transition-metal/iminoiodinane systems are well studied and established. These systems can directly introduce sulfonamide groups with excellent stereoselectivity, albeit with co-production of iodobenzene as waste material. Fortunately, the atom economics of this methodology were improved by introducing highly sustainable nitrene sources such as azide compounds and 1,2,4-dioxazol-5-one derivatives. In this review, we present the details of these developments with respect to their catalysts and nitrene sources..
3. RYO IRIE, TATSUYA UCHIDA, KAZUHIRO MATSUMOTO, Katsuki Catalysts for Asymmetric Oxidation: Design Concepts, Serendipities for Breakthroughs, and Applications, Chemical Letters, 2015.08.
4. TATSUYA UCHIDA, Tsutomu Katsuki, Asymmetric nitrene transfer reactions: sulfimidation, aziridination and C-h amination using azide compounds as nitrene precursors, The Chemical Record, 2014.02, Nitrogen functional groups are found in many biologically active compounds and their stereochemistry has a profound effect on biological activity. Nitrene transfer reactions such as aziridination, C-H bond amination, and sulfimidation are useful methods for introducing nitrogen functional groups, and the enantiocontrol of the reactions has been extensively investigated. Although high enantioselectivity has been achieved, most of the reactions use (N-arylsulfonylimino)phenyliodinane, which co-produces iodobenzene, as a nitrene precursor and have a low atom economy. Azide compounds, which give nitrene species by releasing nitrogen, are ideal precursors but rather stable. Their decomposition needs UV irradiation, heating in the presence of a metal complex, or Lewis acid treatment. The examples of previous azide decomposition prompted us to examine Lewis acid and low-valent transition-metal complexes as catalysts for azide decomposition. Thus, we designed new ruthenium complexes that are composed of a low-valent Ru(II) ion, apical CO ligand, and an asymmetry-inducing salen ligand. With these ruthenium complexes and azides, we have achieved highly enantioselective nitrene transfer reactions under mild conditions. Recently, iridium-salen complexes were added to our toolbox..
5. TATSUYA UCHIDA, Tsutomu Katsuki, Green Asymmetric Oxidation Using Air as Oxidant, Synthetic Organic Chemistry Japan, 2013.11, Nitrogen functional groups are found in many biologically active compounds and their stereochemistry has a profound effect on biological activity. Nitrene transfer reactions such as aziridination, C-H bond amination, and sulfimidation are useful methods for introducing nitrogen functional groups, and the enantiocontrol of the reactions has been extensively investigated. Although high enantioselectivity has been achieved, most of the reactions use (N-arylsulfonylimino)phenyliodinane, which co-produces iodobenzene, as a nitrene precursor and have a low atom economy. Azide compounds, which give We found that (NO)- and (aqua)ruthenium-salen complexes are efficient catalysts for the asymmetric aerobic oxygen atom transfer reactions such as epoxidation and sulfoxidation at ambient temperature. (NO)ruthenium-salen complexes 2 and 3 could catalyze oxidation of sulfides and the epoxidation of conjugated olefins with good to high enantioselectivity using dioxygen as oxidant, albeit under visible light-irradiation, respectively. On the other hand, (aqua)ruthenium-salen complex 5 was found to catalyze highly enantioselective epoxidation in air even without irradiation. Although the mechanism of this ruthenium-catalyzed aerobic oxidation has not been completely elucidated, water that is bound to the ruthenium ion has been considered to play a critical role in proton coupled electron transfer, a key step for oxygen activation, and to be regenerated via oxo-hydroxo tautomerization. We also found that (di-μ-hydroxo)iron-salan complexes catalyzes asymmetric dehydrogenative oxidation reactions such as 2-naphthol coupling, alcohol oxidation, and dearomatization, using air as oxidant..
主要学会発表等
1. 内田竜也, 非ヘム型ルテニウム触媒を用いた酸協働型C-H酸素官能基化, 2022年度 高難度選択酸化反応研究会シンポジウム, 2023.01.
2. Tatsuya Uchida, Carboxylic Acid Corporative Ruthenium-Catalyzed C–H Oxygenation, 11th Singapore International Chemistry Conference (SICC-11), 2022.12.
3. @内田 竜也, 触媒的C-H酸化の開発と展開, 第49回オルガノメタリックセミナー, 2022.10.
4. 土居内大樹、下田菜々子、内田竜也, Non-heme Ruthenium(bpga)-Catalyzed Regio-selective C-H Oxidation, 第68回有機金属化学討論会, 2022.09, 非ヘム型ルテニウム触媒を用いるC–H酸化反応は、系中のカルボン酸の酸性度の向上に伴い反応活性が上昇する傾向が観測されている。そこで、各種カルボン酸の添加挙動の観測を進め、その観測結果からカルボン酸による反応加速効果と配位子交換が進行していることを明らかにした。また、触媒活性の失活過程の一部も明らかとし、その失活過程に基づき、反応性および耐久性を向上させた新規触媒開発を達成した。.
5. Tatsuya Uchida, Ruthenium-Catalyzed Asymmetric Nitrene Transfer Reactions, 5th International Conference on Catalysis and Chemical Engineering (CCE-2021), 2021.02.
6. 土居内大樹、内田竜也, 後期修飾を指向した水を酸素源とする触媒的C–H酸化反応, 日本化学会第101回春季年会, 2021.03, [URL], 有機化合物の後期修飾は、生物活性物質などの機能性化合物の改質において有効な手法である。しかし、複雑な天然物などの機能性物質の後期修飾は、反応位置制御が難しいなど多くの課題が残されている。一方、今回、演者らは、ルテニウム錯体が、水の酸素原子を酸素源に高位置選択的なC–H酸化反応の優れた触媒となることを見出した。同反応では、複雑な化合物でも水の酸素原子を望みの位置に定量的に導入することが可能である。.
7. Daiki Doiuchi, Hiroki Hayashi, Tatsuya Uchida, Ruthenium-Catalyzed 3° C–H Bond Selective Hydroxylation, 6th Japan–UK Symposium on Asymmetric Catalysis, 2018.11.
8. Tatsuya Uchida, Asymmetric C–H Functionalization, 6th Japan–UK Symposium on Asymmetric Catalysis, 2018.11, Carbon–hydrogen bonds are ubiquitous and abundant in organic molecule. If that C–H bond can be directly converted to desired function group with stereo- and site-selective manner, C– H bond functionalization would really strong and efficient tool in organic synthesis. Recently, we found that ruthenium-salen complexes are efficient catalyst for nitrene and oxo transfer reactions using highly atom-economic oxidants such as azide and dioxygen.
(OC)ruthenium(II)-salen complex decompose azide compounds to corresponding nitrene intermediates with co-producing nitrogen gas as the by-product. Obtained ruthenium-nitrene can insert benzylic and allylic C–H bond with excellent site- and stereo-selective manner. Interestingly, ruthenium-catalysed C–H amination undergoes exclusively at methylene C–H bond on ethyl group. 1
On the other hand, (aqua)ruthenium(III) complex can activate dioxygen to superoxide intermediate via single electron transfer (SET). Obtained superoxide delocalized radical cation intermediate.2 This mechanism suggests that, arenols could be oxidized to the electrophilic radical intermediate and then converted to the desired bis(arenol)s. Based on this suggestion, we conducted the oxidative coupling of arenols using dioxygen as a hydrogen accepter. Under ruthenium-catalyzed aerobic conditions, arenols can converted to bis(arenol)s with good to high enantioselectivity. Under that conditions, C3-substituted 2-naphthols using C7-substituted 2-naphthols or phenol derivatives gave the cross-coupling products with good to high chemoselectivity, irrespective with electron nature of each arenols..
9. #土居内大樹、林裕樹、内田竜也, 新規ビス(ピリジルメチル)アミノアセトアミド-ルテニウム錯体を用いた触媒的C–H酸化反応, 第51回 酸化反応討論会, 2018.11.
10. #吉武正貴、林裕樹、内田竜也, ジオキサゾロンをナイトレン源とするスルフィドの不斉イミド化, 第51回 酸化反応討論会, 2018.11.
11. Hiroki Hayashi, Takamasa Ueno, Tatsuya Uchida, Ruthenium-Catalyzed Enantioselective Oxidative Cross-Coupling of 2-Naphthols, 第65回有機金属討論会, 2018.09.
12. 内田竜也, 不斉C–H挿入反応の開発, 第31回生物無機化学夏季セミナー, 2018.09.
13. Hiroki Hayashi, Takamasa Ueno, Tatsuya Uchida, Ruthenium-Catalyzed Enanatioselective Oxidative Cross-Coupling of 2-Naphthols, The Fourth International Symposium On C–H Activation, 2018.08.
14. Yuki Yamakawa, Takashi Ikuta, Hiroki Hayashi, Tatsuya Uchida, Highly Site-selective C–H Insertion via Iridium-Carbene Intermediate, The Fourth International Symposium on C–H Activation, 2018.08.
15. Tatsuya Uchida, Asymmetric Oxidative Cross-Coupling of Arenols, The 13th International Symposium on Activation of Dioxygen and Homogeneous Oxidation Catalysis, 2018.06.
16. 内田竜也, 不斉 C−H 官能基の開発, 第 55 回化学関連支部合同九州大会・外国人研究者交流国際シンポジウム, 2018.06.
17. 内田 竜也, Site-selective Asymmetric C−H Bond Functionalization, The 1st Sino-Japanese Symposium on Catalysis for Precision Synthesis, 2018.05.
18. 内田 竜也, 分子状酸素活性化を用いたアレノール類のヘテロカップリング反応, 新学術領域研究「精密反応場」第5回公開シンポジウム, 2018.05.
19. 上野 貴正, 林 裕樹, 内田 竜也, ルテニウム触媒を用いた 2-ナフトール類の酸化的不斉カップリング, 第50回酸化反応討論会, 2017.11, アレノール類の不斉酸化的カップリング反応は、光学活性なビス(アレノール)類を得る最も直截的かつ有用な手法である。
しかし、従来の方法では、非対称ビス(アレノール)類を得ることは極めて難しく、アレノール間に大きな酸化電位差を付けなければならなかった。
一方、我々は、キラルなルテニウム触媒はユニークな触媒活性を示すことを今回見出した。
すなわち、ルテニウム触媒を用いると2つのアレノール間に大きな電位差がなくても、それぞれの置換様式の違いを認識して非対称ビス(アレノール)を選択的に与えることを明らかにした。.
20. 内田 竜 也・山川 裕生・生田 昂・香月 勗, イリジウム触媒を用いた高位置選択的不斉カルベ ン C-H 挿入反応, 第64回有機金属討論会, 2018.06.
21. 内田 竜也, Activation of Molecular Oxygen and Catalytic Asymmetric Aerobic Oxidation, 第1回精密制御反応場国際シンポジウム, 2016.07, Molecular oxygen (O2) is an ubiquitous, abundant, and highly atom economic oxidant on the earth. However, most of O2 activation required heating and/or pressurizing conditions or the addition of co-reductant, unfortunately. Stereoselectivities of these oxidations are insufficient. On the other hand, typical biological oxidation proceeded with complete stereoselectivity albeit with consuming 2H+ and 2e- and producing water as a waste material. Thus, development of new methodology for O2 activation has been strongly required. Herein, we presented ruthenium-catalyzed highly enantioselective aerobic oxidation such as epoxidation and oxidative kinetic resolution of alcohol.Under aqueous conditions, ruthenium-salen complexes can activate O2 to active oxygen spices such as corresponding superoxide and oxo spices via single-electron-transfer (SET) and proton-coupled- electron-transfer (PCET) with water mediation, and catalyze epoxidation of trans- -methylstyrene derivatives with good to high enantioselectivity (up to 95% ee).1b On the other hand, under alcoholic conditions, racemic sec-alcohol was oxidized with high enantiomer differentiation (krel = up to 60).1a It was noteworthy that ruthenium-salen complexes catalyzed aerobic oxidations are proceed under ambient conditions without any activation methods..
22. 内田 竜也, Development of Catalytic C-C Bond Formation, I2CNER International Workshop -Natural and Chemical Catalysts for Technology-, 2017.02, C-H bond functionalization via carbene transfer reaction is one of strong and useful tool for the construction of carbon framework and has garner much attention. However, C-H bond, which is ubiquitous and abundant in organic molecule, is still difficult to convert desired function group at well. Herein, we found that (aryl)iridium(salen) complexes are efficient catalysis in C-H functionalization.1 (Aryl)iridium complex can decompose -aryl- -dizaoacetates to desired carbene intermediates and convert benzylic, allylic, and propargylic C-H bond to the corresponding C-C bond with excellent diastereo- and enantio-selectivities. Furthermore, iridium-catalyzed C-H insertion reactions showed interesting site-selectivity. That reaction carried out at only methylene C-H bond on ethyl group..
23. 内田 竜也, 生田 昂, 香月 勗, イリジウム触媒を用いたベンジル位およびアリル位へのエナンチオ・ジアステレオ・位置選択的C-Hカルベン挿入反応
, 第24回福岡万有シンポジウム, 2014.06.
24. 生田 昂, 内田 竜也, 香月 勗, イリジウム触媒を用いたベンジル位およびアリル位へのエナンチオ・ジアステレオ・位置選択的C-Hカルベン挿入反応 , 第94日本化学会春季年会, 2014.03.
25. 神谷 翔太, 西岡 洋太, 溝口 大昂, 内田 竜也, 香月 勗, ルテニウム–サレン錯体を用いた大気中酸素を酸化剤とする不斉エポキシ化
, 第46回酸化反応討論会, 2013.11.
26. 福永 恭介, 内田 竜也, 伊東 佑太朗, 香月 勗, Ru(CO)-salen 錯体を用いたアジリジノケトンの不斉合成および(+)-PD 128907 の合成への応用, 第2回CSJ化学フェスタ2012, 2012.10.
27. 西岡 洋太、内田 竜也、香月 勗 , ルテニウムサレン錯体によるアジド化合物を用いたC-H結合の分子間不斉アミノ化反応(1), 第92日本化学会春季年会, 2012.03.
28. 一瀬 麻沙美 安富 陽一 末松 英浩 西岡 洋太 内田 竜也 香月 勗 , イリジウム-サレン錯体を用いた触媒的不斉分子内C-Hアミノ化(2), 第92日本化学会春季年会, 2012.03.
29. 神谷 翔大 内田 竜也 香月 勗 , 分子状酸素を酸化剤とする不斉エポキシ化, 第92春季年会, 2012.03.
30. 溝口大昂、内田竜也、香月勗, 新規ルテニウムサレン錯体の合成と光非照射下での酸素酸化:第二級アルコールの速度論的光学分割, 第91回日本化学会春季年会, 2011.03.
31. 福永恭章、内田竜也、香月勗, 不斉アジリジン化を鍵反応とするドーパミンD3受容体アゴニスト(+)-PD 128907の不斉形式全合成, 第91回日本化学会春季年会, 2011.03.
32. 福永恭章、内田竜也、香月勗, ルテニウム(CO)サレン触媒を用いたビニルケトンの不斉アジリジン化:光学的に純粋なアジリジノケトンの合成, 第90回日本化学会春季年会, 2010.03.
33. 田中春菜、内田竜也、香月勗, ルテニウム-サレン錯体を触媒とする不斉酸素酸化:オレフィンのエポキシ化, 第90回日本化学会春季年会, 2010.03.
34. 内田竜也、香月勗, 新規光学活性二座NHC-銅錯体を用いた 不斉共役付加反応, 第90回日本化学会春季年会, 2010.03.
35. Tatsuya Uchida, Tsutomu Katsuki, Cu-Catalyzed Asymmetric Conjugate Addition of Dialkylzinc to Acyclic Enones Using a New Type of Chiral Bidentate NHC Ligands, IKCOC-11, 2009.11.
36. Hirotaka Mizoguchi, Tatsuya Uchida, Kohichi Ishida, Tsutomu Katsuki, Design of New Ru(PPh3)(OH)-salen complex: Chemoselective Aerobic Oxidation of Primary Alcohols
, IKCOC-11, 2009.11.
37. 溝口大昂、石田浩一、内田竜也、香月勗 , ルテニウム錯体を用いた第一級アルコールの化学選択的空気酸化反応, 第89回日本化学会春季年会, 2009.03.
38. 末松英浩、寒竹重史、内田竜也、香月勗, Iridium-Catalyzed Asymmetric Cyclopropanation, 日英合同不斉触媒シンポジウム(2008), 2008.12.
39. UCHIDA Tatsuya, ISHIDA Kouichi, KATSUKI Tsutomu, Chemoselective Aerobic Oxidation of Alcohols Using a New Ruthenium-salen Complex as Catalyst, 日本化学会第88回春季年会, 2008.03.
40. S. Kanchiku, K. Matsumoto, T. Uchida, T. Katsuki, Highly Cis- and Enantio-selective Cyclopropanation Using Ir-salen Complex as a Catalyst, The 10th International KYOTO Conference on New Aspects of Organic Chemistry (IKCOC-10), 2006.11.
41. S. Kanchiku, K. Matsumoto, T. Uchida, T. Katsuki, Ir(salen)-Catalyzed Cis-Selective Asymmetric Cyclopropanation, 48th Symposium on The Chemistry of Natural Products Sendai 2006, 2006.10.
42. S. Kanchiku, K. Matsumoto, T. Uchida, T. Katsuki, Asymmetric Cyclopropanation Using Ir-Salen Complex as Catalyst , International Molecular Chirality Conference in Toyama, 2006.06.
43. 内田 竜也, サレン金属錯体のcis-b構造を利用した不斉Baeyer-Villiger反応の開発, 文部科学省科学研究費補助金特定領域研究「炭素資源の高度分子変換」第1回若手シンポジウム, 2006.05, [URL].
44. A. Watanabe, T. Uchida, K. Matsumoto, R. Irie, T. Katsuki, Asymmetric Baeyer-Villiger Oxidation Using Metallosalen Complex as Catalyst, 第37回酸化反応討論会, 2004.11.
45. T. Uchida, K. Omura, Y. Tamura, R. Irie, T. Katsuki, Asymmetric Aziridination Using Azide Compounds as Nitrene Precursor in the Presence of Robust Ru(salen) Complex, 51th Symposium on Organometallic Chemistry, 2004.10.
46. T. Uchida, Y. Tamura, M. Murakami, M. Ohba, T. Katsuki, Asymmetric (OC)Ru(salen)-catalyzed sulfimdation using azide compounds as nitrene precursors: its scope and mechanism, ISCD-15, 2003.10.
47. T. Uchida, B. Saha, T. Katsuki, ASYMMETRIC INTRAMOLECULAR CYCLOPROPANATION USING METALLOSALEN COMPLEXES AS CATALYST, ICCA-8, 2002.11.
48. T. Uchida, A. Wtanabe, K. Ito, T. Katsuki, Asymmetric Baeyer-Villiger oxidation of cyclobutanones with hydrogenperoxide as terminal oxidant using metallosalen complex of cis-b-structure as catalyst, ADHOC 2002, 2002.06.
49. T. Niimi, T. Uchida, R. Irie, T. Katsuki, The First Highly cis- and Enantio-selective Cyclopropanation Using Chiral Ru- or Co-salen Complex as a Catalyst, The 8th International KYOTO Conference on New Aspects of Organic Chemistry (IKCOC-8), 2000.08.
特許出願・取得
特許出願件数  2件
特許登録件数  1件
学会活動
所属学会名
アメリカ化学会
日本化学会
有機合成化学協会
学協会役員等への就任
2021.01~2021.12, 公益社団法人有機合成化学協会九州山口支部, 幹事.
2020.01~2020.12, 公益社団法人有機合成化学協会九州山口支部, 幹事.
2019.10~2019.12, 公益社団法人有機合成化学協会九州山口支部, 幹事.
2016.01~2016.12, 公益社団法人有機合成化学協会九州山口支部, 幹事.
2014.01~2014.12, 公益社団法人有機合成化学協会九州山口支部, 幹事.
学会大会・会議・シンポジウム等における役割
2022.06.04~2022.06.04, 第32回万有福岡シンポジウム2022, アドバイザリーボード.
2021.11.19~2021.11.19, 有機合成化学協会九州山口支部2021年第2回講演会, 世話人.
2021.07.05~2021.07.05, 第58回化学関連支部合同九州大会, 組織委員.
2021.06.23~2021.06.24, 第118回有機合成シンポジウム, 組織委員.
2021.05.28~2021.05.28, 有機合成化学協会九州山口支部2021年第1回講演会, 世話人.
2021.09.28~2021.09.30, 第37回有機合成セミナー, 組織委員.
2020.05.23~2020.05.23, 第30回万有福岡シンポジウム, コオーガナイザー.
2018.11.25~2018.11.27, 6th Japan–UK Symposium on Asymmetric Catalysis, 組織委員.
2018.09.25~2018.09.28, 第60回天然有機化合物討論会, 組織委員.
2018.05.12~2018.05.12, 2018年万有福岡シンポジウム, アドバイザリーボード.
2017.03.16~2017.03.19, 第97日本化学会春季年会, 座長(Chairmanship).
2014.03.27~2014.03.30, 第94日本化学会春季年会, 座長(Chairmanship).
2012.03.26~2012.03.30, 第92日本化学会春季年会, 座長(Chairmanship).
2011.03.26~2011.03.30, 第91日本化学会春季年会, 座長(Chairmanship).
2010.03.26~2010.03.30, 第90回日本化学会春季年会, 座長(Chairmanship).
2009.03.26~2009.03.30, 日本化学会, 座長(Chairmanship).
2008.03~2008.03, 日本化学会第88回春季年会, 座長(Chairmanship).
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2022年度      
2021年度      
2017年度      
2016年度      
2015年度      
2014年度      
2013年度    
2012年度    
2011年度      
2010年度      
2009年度      
2007年度      
受賞
長瀬研究振興賞, 長瀬科学財団, 2016.04.
Thieme Chemistry Journals Award, Thieme, 2016.01.
有機合成化学協会九州山口支部奨励賞, 有機合成化学協会九州山口支部, 2015.11.
Banyu Chemist Award, 万有財団, 2015.10.
有機合成化学協会研究企画賞「東レ研究企画賞」, 有機合成化学会, 2008.02.
日本化学会秋季年会講演賞, 日本化学会, 2000.11.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2018年度~2019年度, 新学術領域研究, 代表, 分子状酸素活性化を活用した高立体選択的酸化反応の開発.
2016年度~2017年度, 新学術領域研究, 代表, 新規酸素分子活性化による立体選択的分子変換法の開発.
2014年度~2016年度, 挑戦的萌芽研究, 代表, 高効率的な窒素官能基導入法の開発.
2009年度~2010年度, 若手研究(B), 代表, 含窒素キラルビルディングブロックの効率的合成法の開発.
2006年度~2006年度, 特定領域研究, 代表, 光学活性なジヒドロイミダゾリウム骨格を利用した新規不斉配位子の開発.
2005年度~2007年度, 若手研究(B), 代表, 光学活性な金属錯体を触媒として用いた不斉ハロヒドリン化の研究.
2002年度~2003年度, 特別研究員奨励費, 代表, 後周期遷移金属サレン錯体を用いる不斉酸素酸化反応の研究.
科学研究費補助金の採択状況(文部科学省、日本学術振興会以外)
2022年度~2025年度, 科学技術振興機構戦略的創造研究事業さきがけ, 代表, ゼロエミッション酸化反応の開発.
共同研究、受託研究(競争的資金を除く)の受入状況
2017.04~2018.03, 代表, 環境調和型金属触媒反応に関する研究.
2016.04~2017.03, 代表, 環境調和型金属触媒反応に関する研究.
2015.04~2016.03, 代表, 環境調和型金属触媒反応に関する研究.
寄附金の受入状況
2007年度, 東レ, 有機合成化学協会企画賞「東レ企画賞」.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。