Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Seiji Ogo Last modified date:2020.01.08

Professor / Biofunctional Chemistry / Department of Applied Chemistry / Faculty of Engineering

1. Takuo Minato, Takahiro Matsumoto, Seiji Ogo, Homogeneous catalytic reduction of polyoxometalate by hydrogen gas with a hydrogenase model complex, RSC Advances, 10.1039/c9ra04396a, 9, 34, 19518-19522, 2019.01, The homogeneous catalytic reduction of a polyoxometalate (POM) by hydrogen gas in aqueous media was investigated for the first time by using a [NiRu] hydrogenase model complex (I) under very mild conditions. By bubbling hydrogen gas into the buffer solution containing I and the Dawson-type POM (IIox), the color of the solution turned from pale yellow to dark blue, suggesting the reduction of IIox. The catalytic and kinetic studies revealed that I acted as an efficient catalyst to yield one-electron-reduced Dawson-type POM (IIred) with a low energy barrier for activating dihydrogen and reducing IIoxvia a hydride complex of I. The process for the one-electron reduction of IIox was confirmed by UV-vis spectroscopy, controlled potential electrolysis, and X-ray photoelectron spectroscopy. POM IIred could stably store protons and electrons and release them by addition of oxidants, demonstrating that POMs acted as redox active mediators for transporting protons and electrons from hydrogen gas to acceptors. The recycle study showed that IIox and IIred could be reduced and oxidized by hydrogen and oxygen gases, respectively, at least five times with >99% yield of reduced species, showing a durable system for extracting protons and electrons from hydrogen gas..
2. Ikeda, Kei; Hori, Yuta; Mahyuddin, Muhammad Haris; Shiota, Yoshihito; Staykov, Aleksandar; Matsumoto, Takahiro; Yoshizawa, Kazunari; Ogo, Seiji., Dual Catalytic Cycle of H2 and H2O Oxidations by a Half-Sandwich Iridium Complex: A Theoretical Study. , Inorg. Chem. , 10.1021/acs.inorgchem.9b00307 , 58, 11, 7274-7284 , 2019.05.
3. Kohsei Tsuji, Ki Suk Yoon, Seiji Ogo, Glyceraldehyde-3-phosphate dehydrogenase from Citrobacter sp. S-77 is post-translationally modified by CoA (protein CoAlation) under oxidative stress, FEBS Open Bio, 10.1002/2211-5463.12542, 9, 1, 53-73, 2019.01, Protein CoAlation (S-thiolation by coenzyme A) has recently emerged as an alternative redox-regulated post-translational modification by which protein thiols are covalently modified with coenzyme A (CoA). However, little is known about the role and mechanism of this post-translational modification. In the present study, we investigated CoAlation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from a facultative anaerobic Gram-negative bacterium Citrobacter sp. S-77 (CbGAPDH). GAPDH is a key glycolytic enzyme whose activity relies on the thiol-based redox-regulated post-translational modifications of active-site cysteine. LC-MS/MS analysis revealed that CoAlation of CbGAPDH occurred in vivo under sodium hypochlorite (NaOCl) stress. The purified CbGAPDH was highly sensitive to overoxidation by H 2 O 2 and NaOCl, which resulted in irreversible enzyme inactivation. By contrast, treatment with coenzyme A disulphide (CoASSCoA) or H 2 O 2 /NaOCl in the presence of CoA led to CoAlation and inactivation of the enzyme; activity could be recovered after incubation with dithiothreitol, glutathione and CoA. CoAlation of the enzyme in vitro was confirmed by mass spectrometry. The presence of a substrate, glyceraldehyde-3-phosphate, fully protected CbGAPDH from inactivation by CoAlation, suggesting that the inactivation is due to the formation of mixed disulphides between CoA and the active-site cysteine Cys149. A molecular docking study also supported the formation of mixed disulphide without steric constraints. These observations suggest that CoAlation is an alternative mechanism to protect the redox-sensitive thiol (Cys149) of CbGAPDH against irreversible oxidation, thereby regulating enzyme activity under oxidative stress..
4. Miho Isegawa, Akhilesh K. Sharma, Seiji Ogo, Keiji Morokuma, Electron and Hydride Transfer in a Redox-Active NiFe Hydride Complex
A DFT Study, ACS Catalysis, 10.1021/acscatal.8b02368, 8, 11, 10419-10429, 2018.11, We present mechanistic details of the formation of a NiFe hydride complex and provide information on its electron- and hydride-transfer processes on the basis of density functional theory calculations and artificial-force-induced-reaction studies. The NiFe hydride complex conducts three transfer reactions: namely, electron transfer, hydride transfer, and proton transfer. In a NiFe hydride complex, the hydride binds to Fe, which is different from the Ni-R state in hydrogenase where the hydride is located between Ni and Fe. According to our calculations, in reaction with the ferrocenium ion, electron transfer occurs from the NiFe hydride complex to the ferrocenium ion, followed by a hydrogen atom transfer (HAT) to the second ferrocenium ion. The oxidation state of Fe varies during the redox process, different from the case of NiFe hydrogenase, where the oxidation state of Ni varies. A single-step hydride transfer occurs in the presence of a 10-methylacridinium ion (AcrH+), which is more kinetically feasible than the HAT process. In contrast to the HAT and hydride-transfer process, the proton transfer occurs through a low barrier from a protonated diethyl ether. The revealed reaction mechanism guides the interpretation of the catalytic cycle of NiFe hydrogenase and leads to the development of efficient biomimetic catalysts for H2 generation and an electron/hydride transfer..
5. Yuki Mori, Tatsuya Ando, Takahiro Matsumoto, Takeshi Yatabe, Mitsuhiro Kikkawa, Ki Suk Yoon, Seiji Ogo, Multifunctional Catalysts for H2O2-Resistant Hydrogen Fuel Cells, Angewandte Chemie - International Edition, 10.1002/anie.201810270, 57, 48, 15792-15796, 2018.11, The development of hydrogen fuel cells is greatly hindered by the unwanted generation of H<sub>2</sub>O<sub>2</sub> at the cathode. A non-Pt cathode catalyst is now shown to be capable of simultaneously reducing both O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>, thus rendering H<sub>2</sub>O<sub>2</sub> a useful part of the feed stream. The applicability of this unique catalyst is demonstrated by employing it in a fuel cell running on H<sub>2</sub>/CO and O<sub>2</sub>/H<sub>2</sub>O<sub>2</sub>..
6. Makoto Takenaka, Mitsuhiro Kikkawa, Takahiro Matsumoto, Takeshi Yatabe, Tatsuya Ando, Ki Suk Yoon, Seiji Ogo, Oxidation of Guanosine Monophosphate with O
via a Ru-peroxo Complex in Water, Chemistry - An Asian Journal, 10.1002/asia.201801267, 13, 21, 3180-3184, 2018.11, Oxidative damage of DNA by reactive oxygen species (ROS) is responsible for aging and cancer. Although many studies of DNA damage by ROS have been conducted, there have been no reports of the oxidation of RNA components, such as guanosine monophosphate, by metal-based species in water. Here, we report the first case of oxidation of guanosine monophosphate to 8-oxoguanosine monophosphate by a metal-based oxygen bound species, derived from O
and in water..
7. Miho Isegawa, Akhilesh K. Sharma, Seiji Ogo, Keiji Morokuma, DFT Study on Fe(IV)-Peroxo Formation and H Atom Transfer Triggered O2 Activation by NiFe Complex, Organometallics, 10.1021/acs.organomet.8b00098, 37, 10, 1534-1545, 2018.05, The mechanism for dioxygen activation using the biomimetic model complex of [NiFe]-hydrogenase, [NiLFe(η5-C5Me5)]+ [L = N,N′-diethyl-3,7-diazanonane-1,9-dithiolato] was established using density functional theory (DFT) and artificial force-induced reaction (AFIR) methods. Our computational results suggest that O2 binds to the FeII center in an end-on fashion and forms a high-valent iron complex, NiFe-peroxo (NiIIFeIV2-O2)), which has been experimentally observed. The O-O bond cleavage occurs in the presence of borohydride (BH4-) through hydrogen atom transfer (HAT). Once the HAT occurs, the generated BH3 radical anion (BH3•-) binds to the terminal oxygen of NiFe-OOH, giving rise to BH3OH- and NiIIFeIV O. The second HAT from BH4- to the oxygen of NiIIFeIV O leads to BH3OH- and Fe-reduced NiIIFeII complex. Importantly, the dioxygen activation is triggered by HAT, not by proton transfer or hydride transfer. The O2 is activated by the Fe center, and the oxidation state of Fe varies during the process, while the oxidation state of Ni is conserved. These mechanistic insights into O2 activation are essential in understanding the formation of the inactive state and reactivation process in hydrogenase..
8. Takeshi Yatabe, Taisuke Tokunaga, Takahiro Matsumoto, Mitsuhiro Kikkawa, Ki Suk Yoon, Seiji Ogo, A MnI model for the photoinhibited species of oxygen-evolving complex, Chemistry Letters, 10.1246/cl.170869, 47, 1, 34-36, 2018.01, We report the reactivity of a new MnI(cyclam) complex (cyclam: 1,4,8,11-tetraazacyclotetradecane) toward O2 and H2O as a model for the photoinhibited species of oxygen-evolving complex (OEC). The reactivity varies according to the number of CO ligands. A MnI dicarbonyl complex, [MnI(cyclam)(CO)2]+ reacts with O2, but not with H2O, to form a bis(μ-oxo)Mn2III,IV complex, though a MnI tricarbonyl complex, [MnI(cyclam)(CO)3]+ does not react with either O2 or H2O. Newly synthesized MnI(cyclam) dicarbonyl complex was characterized by ESI mass spectrometry, UVvis absorption spectroscopy, IR spectroscopy, and X-ray analysis..
9. Noor Dina Muhd Noor, Hiroaki Matsuura, Koji Nishikawa, Hulin Tai, Shun Hirota, Jaehyun Kim, Jiyoung Kang, Masaru Tateno, Ki Suk Yoon, Seiji Ogo, Shintaro Kubota, Yasuhito Shomura, Yoshiki Higuchi, Redox-dependent conformational changes of a proximal [4Fe-4S] cluster in Hyb-type [NiFe]-hydrogenase to protect the active site from O
2, Chemical Communications, 10.1039/c8cc06261g, 54, 87, 12385-12388, 2018.01, Citrobacter sp. S-77 [NiFe]-hydrogenase harbors a standard [4Fe-4S] cluster proximal to the Ni-Fe active site. The presence of relocatable water molecules and a flexible aspartate enables the [4Fe-4S] to display redox-dependent conformational changes. These structural features are proposed to be the key aspects that protect the active site from O
10. Taisuke Tokunaga, Takeshi Yatabe, Takahiro Matsumoto, Tatsuya Ando, Ki Suk Yoon, Seiji Ogo, Mechanistic investigation of the formation of H2 from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase, Science and Technology of Advanced Materials, 10.1080/14686996.2017.1379857, 18, 1, 870-876, 2017.12, We report the mechanistic investigation of catalytic H2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction..
11. Mitsuhiro Kikkawa, Takeshi Yatabe, Takahiro Matsumoto, Ki Suk Yoon, Kazuharu Suzuki, Takao Enomoto, Kenji Kaneko, Seiji Ogo, A Fusion of Biomimetic Fuel and Solar Cells Based on Hydrogenase, Photosystem II, and Cytochrome c Oxidase, ChemCatChem, 10.1002/cctc.201700995, 9, 21, 4024-4028, 2017.11, 本業績では、燃料電池と太陽電池を融合する同一触媒の開発に成功した。次世代の電池として、燃料電池と太陽電池はこれまで別々に開発されてきた。本研究では、「自然界の水素酵素と光合成の機能を融合した新しい触媒」を開発に成功した。この触媒を用いると、「水素をエネルギー源として燃料電池が、水と光をエネルギー源として太陽電池が駆動する」ことを見出した。本研究成果はエネルギー研究の分野において格段の発展と波及効果をもたらす可能性が期待できる。.
12. Takahiro Matsumoto, Takahiro Kishima, Takeshi Yatabe, Ki Suk Yoon, Seiji Ogo, Mechanistic Insight into Switching between H2- or O2-Activation by Simple Ligand Effects of [NiFe]hydrogenase Models, Organometallics, 10.1021/acs.organomet.7b00471, 36, 20, 3883-3890, 2017.10, We present a mechanistic investigation for the activation of H2 and O2, induced by a simple ligand effect within [NiFe] models for O2-tolerant [NiFe]hydrogenase. Kinetic study reveals Michaelis-Menten type saturation behaviors for both H2 and O2 activation, which is the same behavior as that found in O2-tolerant [NiFe]hydrogenase. Such saturation behavior is caused by H2 complexation followed by heterolytic cleavage of H2 by an outer-sphere base, resulting in the formation of a hydride species showing hydridic character..
13. Y. Shomura, M. Taketa, H. Nakashima, H. Tai, H. Nakagawa, Y. Ikeda, M. Ishii, Y. Igarashi, H. Nishihara, Ki Suk Yoon, Seiji Ogo, S. Hirota, Y. Higuchi, Structural basis of the redox switches in the NAD+-reducing soluble [NiFe]-hydrogenase, Science, 10.1126/science.aan4497, 357, 6354, 928-932, 2017.09, NAD+ (oxidized form of NAD: nicotinamide adenine dinucleotide)-reducing soluble [NiFe]-hydrogenase (SH) is phylogenetically related to NADH (reduced form of NAD+):quinone oxidoreductase (complex I), but the geometrical arrangements of the subunits and Fe-S clusters are unclear. Here, we describe the crystal structures of SH in the oxidized and reduced states. The cluster arrangement is similar to that of complex I, but the subunits orientation is not, which supports the hypothesis that subunits evolved as prebuilt modules. The oxidized active site includes a six-coordinate Ni, which is unprecedented for hydrogenases, whose coordination geometry would prevent O2 from approaching. In the reduced state showing the normal active site structure without a physiological electron acceptor, the flavin mononucleotide cofactor is dissociated, which may be caused by the oxidation state change of nearby Fe-S clusters and may suppress production of reactive oxygen species..
14. Hidetaka Nakai, Masafumi Kuyama, Juncheol Seo, Takahiro Goto, Takahiro Matsumoto, Seiji Ogo, Luminescent Tb(III) and Sm(III) complexes with a 1,4,7-triazacyclononane-based tris-aryloxide ligand for high-performance oxygen sensors, Dalton Transactions, 10.1039/c7dt01388d, 46, 28, 9126-9130, 2017.06, Taking advantage of the outstanding oxygen-sensitive luminescence properties of the previously synthesised Tb(iii) complex [{(MeMeArO)3tacn}LnIII(THF)] (1Tb, Ln = Tb), herein, we have prepared an oxygen sensor based on 1Tb embedded in polystyrene film (1Tb/PS) and found that 1Tb/PS shows the highest sensitivity (I0/I100 = 14.9) and the fastest response (response/recovery time = 1.9 s/2.9 s), among the lanthanide(iii)-based oxygen sensors with f-f emission. Moreover, we have prepared the lanthanide(iii)-based colorimetric luminescent oxygen sensor (1TbSm/PS) with green-yellow-red responses, by using 1Tb and a newly synthesised oxygen-insensitive Sm(iii) complex (1Sm, Ln = Sm; Φ = 0.010 and τ = 12.2 μs)..
15. Ki Suk Yoon, Nga T. Nguyen, Kien Trung Tran, Kohsei Tsuji, Seiji Ogo, Nitrogen fixation genes and nitrogenase activity of the non-heterocystous cyanobacterium Thermoleptolyngbya sp. O-77, Microbes and Environments, 10.1264/jsme2.ME17015, 32, 4, 324-329, 2017.01, Cyanobacteria are widely distributed in marine, aquatic, and terrestrial ecosystems, and play an important role in the global nitrogen cycle. In the present study, we examined the genome sequence of the thermophilic non-heterocystous N2-fixing cyanobacterium, Thermoleptolyngbya sp. O-77 (formerly known as Leptolyngbya sp. O-77) and characterized its nitrogenase activity. The genome of this cyanobacterial strain O-77 consists of a single chromosome containing a nitrogen fixation gene cluster. A phylogenetic analysis indicated that the NifH amino acid sequence from strain O-77 was clustered with those from a group of mesophilic species: the highest identity was found in Leptolyngbya sp. KIOST-1 (97.9% sequence identity). The nitrogenase activity of O-77 cells was dependent on illumination, whereas a high intensity of light of 40 µmol m-2 s-1 suppressed the effects of illumination..
16. Seiji Ogo, Yuki Mori, Tatsuya Ando, Takahiro Matsumoto, Takeshi Yatabe, Ki Suk Yoon, Hideki Hayashi, Masashi Asano, One Model, Two Enzymes
Activation of Hydrogen and Carbon Monoxide, Angewandte Chemie - International Edition, 10.1002/anie.201704864, 56, 33, 9723-9726, 2017.01, The ability to catalyze the oxidation of both H2 and CO in one reaction pot would be a major boon to hydrogen technology since CO is a consistent contaminant of H2 supplies. Here, we report just such a catalyst, with the ability to catalyze the oxidation of either or both H2 and CO, based on the pH value. This catalyst is based on a NiIr core that mimics the chemical function of [NiFe]hydrogenase in acidic media (pH 4–7) and carbon monoxide dehydrogenase in basic media (pH 7–10). We have applied this catalyst in a demonstration fuel cell using H2, CO, and H2/CO (1/1) feeds as fuels for oxidation at the anode. The power density of the fuel cell depends on the pH value in the media of the fuel cell and shows a similar pH dependence in a flask. We have isolated and characterized all intermediates in our proposed catalytic cycles..
17. Takeshi Yatabe, Takahiro Kishima, Hideaki Nagano, Takahiro Matsumoto, Mikio Yamasaki, YOON KI SUK, Seiji Ogo, Structure and Reactivity of a Ru-based Peroxide Complex as a Reactive Intermediate of O2-Promoted Activation of a C–H Bond in a Cp* Ligand. , 10.1246/cl.160909, 46, 1, 74-76, 2016.12.
18. Makoto Takenaka, YOON KI SUK, Takahiro Matsumoto, Seiji Ogo, Acetyl-CoA Production by Encapsulated Pyruvate Ferredoxin Oxidoreductase in Alginate Hydrogels.,, 227, 279-285, 2016.12.
19. Seiji Ogo, H2 and O2 Activation by [NiFe]Hydrogenases — Insights from Model Complexes.,, 2016.07.
20. Hidetaka Nakai, Juncheol Seo, Kazuhiro Kitagawa, Takahiro Goto, Kyoshiro Nonaka, Takahiro Matsumoto, Seiji Ogo, Control of Lanthanide Coordination Environment: Synthesis, Structure, and Oxygen-Sensitive Luminescence Properties of an Eight-Coordinate Tb(III) Complex., 10.1021/acs.inorgchem.6b00800, 55, 13, 6609-6615, 2016.06.
21. Koji Yoshimoto, Takeshi Yatabe, Takahiro Matsumoto, TRAN VIET HA, ROBERTSON ANDREW, Hidetaka Nakai, Koichiro Asazawa, Hirohisa Tanaka, Seiji Ogo, Inorganic Clusters with a [Fe2MoOS3] Core—A Functional Model for Acetylene Reduction by Nitrogenases., 10.1039/C6DT01655C, 45, 37, 14620-14627, 2016.06.
22. Hidetaka Nakai, Juncheol Seo, Kazuhiro Kitagawa, Takahiro Goto, Takahiro Matsumoto, Seiji Ogo, An Oxygen-Sensitive Luminescent Dy(III) Complex., 10.1039/C6DT01057A, 45, 23, 9492-9496, 2016.05.
23. Hidetaka Nakai, Kazuhiro Kitagawa, Juncheol Seo, Takahiro Matsumoto, Seiji Ogo, A Gadolinium(III) Complex That Shows Room-Temperature Phosphorescence in the Crystalline State., 10.1039/C6DT01303A, 45, 29, 11620-11623, 2016.05.
24. Takahiro Kishima, Takahiro Matsumoto, Nakai Hidetaka, Shinya Hayami, Takehiro Ohta, Seiji Ogo, A High-Valent Iron(IV) Peroxo Core Derived from O2., 10.1002/anie.201507022, 55, 2, 724-727, 2016.02, 本研究では、単核の高原子価(4価)の鉄に酸素が結合したペルオキソ化合物の単離に世界で初めて成功した。X線構造解析により、鉄に酸素が結合したサイド−オン型構造であることを明らかにした。この化合物は、酸素耐性ヒドロゲナーゼの「酸素活性化の中間体」のモデルとなる初めての鉄(4価)ペルオキソ化合物である。このペルオキソ化合物は、水素イオンおよび電子と反応して水を生成する。この反応は、燃料電池のカソード反応に対応している。.
25. Keisuke Takashita, Takahiro Matsumoto, Takeshi Yatabe, Nakai Hidetaka, Seiji Ogo, A Non-precious Metal, Ni Molecular Catalyst for a Fuel Cell Cathode., 10.1246/cl.150988, 45, 2, 137-139, 2016.02.
26. Koji Yoshimoto, Takeshi Yatabe, Takahiro Matsumoto, ROBERTSON ANDREW, Nakai Hidetaka, Hiromasa Tanaka, Takashi Kamachi, Yoshihito Shiota, Yoshizawa Kazunari, Koichiro Asazawa, Hirohisa Tanaka, Seiji Ogo, Synthesis and Structure of a Water-soluble μ-η1:η1-N2 Dinuclear RuII Complex with a Polyamine Ligand., 10.1246/cl.151004, 45, 2, 149-151, 2016.02.
27. Takahiro Matsumoto, Koji Yoshimoto, Chunbai Zheng, Yasuhito Shomura, Yoshiki Higuchi, Hidetaka Nakai, Seiji Ogo, Synthesis and Reactivity of a Water-soluble NiRu Monohydride Complex with a Tethered Pyridine Moiety. , 10.1246/cl.151029, 45, 2, 197-199, 2016.02.
28. Hidetaka Nakai, Kengo Matsuba, Masataka Akimoto, Tomonori Nozaki, Takahiro Matsumoto, Kiyoshi Isobe, Masahiro Irie, Seiji Ogo, Photoinduced Bending of Rod-like Millimetre-size Crystals of a Rhodium Dithionite Complex with n-Pentyl Moieties., 10.1039/C6CC00059B, 52, 23, 4349-4352, 2016.02.
29. Keisuke Takashita, Takahiro Matsumoto, Takeshi Yatabe, Nakai Hidetaka, Masatatsu Suzuki, Seiji Ogo, A Water-soluble Ni Dihydrido Complex That Reduces O2 to H2O in Water., 10.1246/cl.150935, 45, 1, 72-74, 2016.01.
30. Noor Muhd, Dina Noor, Koji Nishikawa, YOON KI SUK, Seiji Ogo, Yoshiki Higuchi, Improved Purification, Crystallization and Crystallographic Study of Hyd-2-type [NiFe]-hydrogenase from Citrobacter sp. S-77., 10.1107/S2053230X15024152, F72, 1, 52-58, 2016.01.
31. Kohsei Tsuji, YOON KI SUK, Seiji Ogo, Biochemical Characterization of a Bifunctional Acetaldehyde-Alcohol Dehydrogenase Purified from a Facultative Anaerobic Bacterium Citrobacter sp. S-77. , J. Biosci. Bioeng. , 10.1016/j.jbiosc.2015.06.019. , 2015.10.
32. Takeshi Yatabe, Mitsuhiro Kikkawa, Takahiro Matsumoto, Keishi Urabe, ANDREW ROBERTSON, Nakai Hidetaka, Seiji Ogo, An Fe-based Model for Metabolism Linking between O2-reduction and H2O-oxidation. , Chem. Lett. , 10.1246/cl.150468, 44, 9, 1263-1265, 2015.09.
33. Tran Viet-Ha, Takeshi Yatabe, Takahiro Matsumoto, Nakai Hidetaka, Kazuharu Suzuki, Takao Enomoto, Hibino Takeshi, Kenji Kaneko, Seiji Ogo, An IrSi Oxide Film as a Highly Active Water-Oxidation Catalyst in Acidic Media. , Chem. Commun., 10.1039/C5CC04286K, 51, 63, 12589-12592, 2015.07.
34. Tran Viet-Ha, Takeshi Yatabe, Takahiro Matsumoto, Nakai Hidetaka, Kazuharu Suzuki, Takao Enomoto, Seiji Ogo, An N2-Compatible Ni0 MOCVD Precursor. , Chem. Lett. , org/10.1246/cl.150155, 44, 6, 794-796, 2015.06.
35. Nakai Hidetaka, Nonaka Kyoshiro, Goto Takahiro, Seo Juncheol, Takahiro Matsumoto, Seiji Ogo, A Macrocyclic Tetraamine bearing Four Phenol Groups: A New Class of Heptadentate Ligands To Provide an Oxygen-Sensitive Luminescent Tb(III) Complex with an Extendable Phenol Pendant Arm., Dalton Trans., 10.1039/C5DT00816F, 2015.05.
36. Taketa Midori, Hanae Nakagawa, Habukawa Mao, Osuka Hisao, Kihira Kiyohito, Komori Hirofumi, Shibata Naoki, Ishii Masaharu, Igarashi Yasuo, Nishihara Hirofumi, YOON KI SUK, Seiji Ogo, Shomura Yasuhito, Higuchi, Yoshiki, Crystallization and Preliminary X-ray Analysis of the NAD+-Reducing [NiFe] Hydrogenase from Hydrogenophilus Thermoluteolus TH-1. , Acta Crystallogr. Sect. F Struct. Biol. Commun. , 10.1107/S2053230X14026521, F71, 1, 96-99, 2014.12.
37. Nakai Hidetaka, Goto Takahiro, Kitagawa Kazuhiro, Nonaka Kyoshiro, Takahiro Matsumoto, Seiji Ogo, A Highly Luminescent and Highly Oxygen-Sensitive Tb(III) Complex with a Tris-Aryloxide Functionalised 1,4,7-Triazacyclononane Ligand. , Chem. Commun. , 10.1039/C4CC07717B, 50, 99, 15737-15739, 2014.10.
38. Harutaka Nakamori, Takahiro Matsumoto, Takeshi Yatabe, YOON KI SUK, Nakai Hidetaka, Seiji Ogo, Synthesis and Crystal Structure of a Dinuclear, Monomeric MnII p-Semiquinonato Complex. , Chem. Commun., 50, 86, 13059-13061, 2014.09.
39. Nguyen, Nga T., Yuki Mori, Takahiro Matsumoto, Takeshi Yatabe, 嘉部 量太, Nakai Hidetaka, YOON KI SUK, Seiji Ogo, A [NiFe]hydrogenase Model That Catalyses the Release of Hydrogen from Formic Acid. , Chem. Commun., 50, 87, 13385-13387, 2014.09.
40. Takahiro Matsumoto, Tatsuya Ando, Yuki Mori, Takeshi Yatabe, Nakai Hidetaka, Seiji Ogo, A (Ni-SIr)I Model for [NiFe]hydrogenase. , J. Organomet. Chem., 2014.09.
41. Takeshi Yatabe, Takahiro Kikunaga, Takahiro Matsumoto, Nakai Hidetaka, YOON KI SUK, Seiji Ogo, Synthesis of Aqueous-stable and Water-soluble Mononuclear Nonheme MnV–oxo Complexes Using H2O2 as an Oxidant., Chem. Lett. , 43, 8, 1380-1382, 2014.08.
42. Nakai Hidetaka, Kihun Jeong, Takahiro Matsumoto, Seiji Ogo, Catalytic C−F Bond Hydrogenolysis of Fluoroaromatics by [(η5‑C5Me5)RhI(2,2′-bipyridine)]. , Organometallics, 33, 17, 4349-4352, 2014.08.
43. Takahiro Matsumoto, Shigenobu Eguchi, Nakai Hidetaka, Takashi Hibino, YOON KI SUK, Seiji Ogo, [NiFe]Hydrogenase from Citrobacter sp. S-77 Surpasses Platinum as an Electrode for H2 Oxidation Reaction. , Angew. Chem. Int. Ed, , 53, 34, 8895-8898, 2014.06, 水素と酸素から電気を作る燃料電池は、排出物として水しか生成しないクリーンな発電装置である。燃料電池はその構造によって数種類に分類され、なかでも低温作動や小型軽量化が可能な固体高分子形燃料電池(polymer electrolyte fuel cell、PEFC)は、家庭用、携帯用、自動車用電源に適している。しかし、PEFCの電極触媒は枯渇資源で高価な白金触媒であり、その代替触媒の開発が行われてきたが、未だに白金に代わる実用触媒の開発には至っていない。本研究では、水素極(水素から電子を取り出す電極)の脱白金触媒として水素酸化酵素であるヒドロゲナーゼを用いたPEFCを初めて作製し、それらの発電実験に成功した。本研究で使用したヒドロゲナーゼS–77(当研究室で新規に探索・精製・単離)は、これまでのヒドロゲナーゼよりも高活性かつ頑丈であり、PEFCの作動条件でも十分にその機能を発揮できる。ヒドロゲナーゼS–77の単位重量あたりの水素酸化活性は、白金触媒に対して637倍であることを明らかにした。.
44. Seiji Ogo, H2 and O2 Activation—A Remarkable Insight into Hydrogenase. , Chem. Rec. , 14, 3, 397-409, 2014.05.
45. Nguyen, Nga T., Takeshi Yatabe, YOON KI SUK, Seiji Ogo, Molybdenum-Containing Membrane-Bound Formate Dehydrogenase Isolated from Citrobacter sp. S-77 Having High Stability against Oxygen, pH, and Temperature. , J. Biosci. Bioeng. , 118, 4, 386-391, 2014.04.
46. Smith, David P., Chen, Hong, Seiji Ogo, Elduque, Ana I., Eisenstein, Miriam, Olmstead, Marilyn M., Fish, Richard H., Bioorganometallic Chemistry. 27. Synthetic, X-ray Crystallographic, and Competitive Binding Studies in the Reactions of Nucleobases, Nucleosides, and Nucleotides with [Cp*Rh(H2O)3](OTf)2, as a Function of pH, and the Utilization of Several Cp*Rh–DNA Base Complexes in Host–Guest Chemistry. , Organometallics , 33, 10, 2389-2404, 2014.04.
47. Kyoshiro Nonaka, YOON KI SUK, Seiji Ogo, Biochemical Characterization of Psychrophilic Mn-Superoxide Dismutase from Newly Isolated Exiguobacterium sp. OS-77. , Extremophiles 2014, 18 , 2, 363–373, 2014.03.
48. Takeshi Yatabe, Mitsuhiro Kikkawa, Takahiro Matsumoto, Nakai Hidetaka, Kenji Kaneko, Seiji Ogo, A model for the water-oxidation and recovery systems of the oxygen-evolving complex., Dalton Trans., 43, 8, 3063–3071, 2014.02.
49. Harutaka Nakamori, Takeshi Yatabe, YOON KI SUK, Seiji Ogo, Purification and Characterization of an Oxygen-Evolving Photosystem II from Leptolyngbya sp. strain O-77. , J. Biosci. Bioeng., 118, 2, 119–124, 2014.02.
50. Tatsuhiko Yagi, Seiji Ogo, Yoshiki Higuchi, Catalytic Cycle of Ctochrome-c3 Hydrogenase, a [NiFe]-Enzyme, Deduced from the Structures of the Enzyme and the Enzyme Mimic. , Int. J. Hydrogen Energy , 39, 32, 18543–18550, 2014.01.
51. Takahiro Kikunaga, Takahiro Matsumoto, Takehiro Ohta, Nakai Hidetaka, Yoshinori Naruta, Kwang-Hyun Ahn, Yoshihito Watanabe, Seiji Ogo, Isolation of a MnIV Acylperoxo Complex and Its Monooxidation Ability., Chem. Commun., 49, 75, 8356-8358, 2013.10.
52. Daisuke Inoki, Takahiro Matsumoto, Nakai Hidetaka, Seiji Ogo, Isolation and Crystal Structure of the Proposed Low-Valent Active Species in the H2 Activation Catalytic Cycle. , Eur. J. Inorg. Chem. , 2013, 22-23, 3978-3986, 2013.08.
53. Nakai Hidetaka, Kazuhiro Kitagawa, Harutaka Nakamori, Taisuke Tokunaga, Takahiro Matsumoto, Koichi Nozaki, Seiji Ogo, Reversible Switching of the Luminescence of a Photoresponsive Gadolinium(III) Complex. , Angew. Chem. Int. Ed. , 52, 33, 8722-8725, 2013.08.
54. Takahiro Matsumoto, Kyoungmok Kim, Nakai Hidetaka, Takashi Hibino, Seiji Ogo, Organometallic Catalysts for Use in a Fuel Cell. , ChemCatChem, 5, 6, 1368-1373, 2013.06.
55. Kyoshiro Nonaka, Nguyen, Nga T., Yoon, Ki-Seok, Seiji Ogo, Katsuhiro Kusaka, Takashi Ohhara, Novel “H2-oxidizing” [NiFeSe]hydrogenase from Desulfovibrio vulgaris Miyazaki F., J. Biosci. Bioeng., 115, 4, 366-371, 2013.04.
56. Seiji Ogo, Koji Ichikawa, Takahiro Kishima, Takahiro Matsumoto, Nakai Hidetaka, Katsuhiro Kusaka, Takashi Ohhara, A Functional [NiFe]Hydrogenase Mimic That Catalyzes Electron and Hydride Transfer from H2. , Science , 339, 6120, 682-684, 2013.02, ニッケル・鉄ヒドロゲナーゼは、常温・常圧という温和な条件下で触媒的に水素を酸化する酵素である。多くの研究グループが、ニッケル・鉄ヒドロゲナーゼの機能モデル錯体の開発を試みてきたが、これまで達成されることはなかった。本研究では、世界で初めて常温・常圧で水素をヘテロリティックに活性化し、水素を酸化できるニッケル・鉄モデル錯体の開発に成功した。その反応中間体であるヒドリド錯体の構造は、X線構造解析をはじめとする種々の分光学的測定によって決定された。.
57. Kyoungmok Kim, Takahiro Kishima, Takahiro Matsumoto, Nakai Hidetaka, Seiji Ogo, Selective Redox Activation of H2 or O2 in a [NiRu] Complex by Aromatic Ligand Effects. , Organometallics, 32, 1, 79-87, 2012.12.
58. Eguchi, Shigenobu; Yoon, Ki-Seok; Ogo, Seiji.* , O2-stable Membrane-bound [NiFe] hydrogenase from a Newly Isolated Citrobacter sp. S-77, J. Biosci. Bioeng. , 114, 5, 479-484, 2012.11.
59. Jeong, Kihun; Nakamori, Harutaka; Imai, Shunsuke; Matsumoto, Takahiro; Ogo, Seiji;*Nakai, Hidetaka.* , A Neutral Five-coordinated Organoruthenium(0) Complex: X-ray Structure and Unique Solvatochromism, Chem. Lett., 41, 6, 650-651, 2012.06.
60. Kim, Kyoungmok; Matsumoto, Takahiro; Robertson, Andrew; Nakai, Hidetaka; Ogo, Seiji.*, Simple Ligand Effects Switch a Hydrogenase Mimic between H2 and O2 Activation, Chemistry - An Asian Journal, 2012.03.
61. Inoki, Daisuke; Matsumoto, Takahiro; Nakai, Hidetaka; Ogo, Seiji.* , Experimental Study of Reductive Elimination of H2 from Rhodium Hydride Species, Organometallics, 31, 8, 2996-3001, 2012.03.
62. Yatabe, Takeshi; Karasawa, Masaki; Isobe, Kiyoshi; Ogo, Seiji; Nakai, Hidetaka.* , A Naphthyl-substituted Pentamethylcyclopentadienyl Ligand and its Sm(II) Bent-metallocene Complexes with Solvent-induced Structure Change, Dalton Trans., 41, 354-356, 2012.01.
63. Inoki, Daisuke; Matsumoto, Takahiro; Hayashii, Hideki; Takashita, Keisuke; Nakai, Hidetaka; Ogo, Seiji.*, Establishing the Mechanism of Rh-catalysed Activation of O2 by H2, Dalton Trans. , 2012.01.
64. Inoki, Daisuke; Matsumoto, Takahiro; Nakai, Hidetaka; Ogo, Seiji.* , A mer-Triaqua Rh Complex with a Terpyridine Ligand, Chem. Lett. , 41, 116-118, 2011.12.
65. Ando, Tatsuya; Nakata, Naoki; Suzuki, Kazuharu; Matsumoto, Takahiro; Ogo, Seiji, Ru Cyclooctatetraene Precursors for MOCVD, Dalton Trans., 41, 1678-1682, 2011.10.
66. Matsumoto, Takahiro; Nagahama, Takuma; Cho, Jaeheung; Hizume, Takuhiro; Suzuki, Masatatsu; Ogo, Seiji, Preparation and Reactivity of a Nickel Dihydride Complex, Angew. Chem. Int. Ed., 50, 10578-10580, 2011.10, 水素酸化酵素(ヒドロゲナーゼ)は、水中・常温・常圧という温和な条件下で、触媒的に水素を酸化する魅力的な酵素である。その酵素1分子単位での水素酸化の触媒効率は、人工触媒である白金よりも優れていることが知られている。そのため、ヒドロゲナーゼの水素酸化触媒サイクルの解明は非常に重要である。しかし、触媒反応の鍵となる還元活性種であるジヒドリド錯体は、これまで観測されていなかった。本研究では世界で初めてその還元活性種のモデル錯体の合成とその反応性を明らかにすることに成功した。.
67. Matsumoto, Takahiro; Kim, Kyoungmok; Ogo, Seiji, Molecular Catalysis in a Fuel Cell, Angew. Chem. Int. Ed., 50, 11202-11205, 2011.10, 一般的に燃料電池電極触媒には、枯渇資源で高価な白金触媒が使用されている。そのため、白金代替触媒の開発が実用化に向けての大きな課題である。本論文では、白金の代替分子触媒を開発し、世界初の分子触媒を用いた分子燃料電池を開発し、水素と酸素を用いて発電させることに成功した。.
68. Robertson, Andrew; Matsumoto, Takahiro; Ogo, Seiji, The Development of Aqueous Transfer Hydrogenation Catalysts, Dalton Trans., 40, 10304-10310, 2011.10.
69. Matsumoto, Takahiro; Kabe, Ryota; Nonaka, Kyoshiro; Ando, Tatsuya; Yoon, Ki-Seok; Nakai, Hidetaka; Ogo, Seiji, Model Study of CO Inhibition of [NiFe]hydrogenase, Inorg. Chem., 50, 8902-8906, 2011.08.
70. Kanemitsu, Hironobu; Harada, Ryosuke; Ogo, Seiji.*, A Water-soluble Iridium(III) Porphyrin, Chem. Commun., 10.1039/c000263a, 46, 18, 3083, 2010.05, イリジウム錯体は数多く合成されており、触媒として様々な分野で幅広く用いられている。その中の1つとしてポルフィリンを配位子として有するイリジウム錯体も報告されているが、現在までに水溶性イリジウムポルフィリン錯体の報告例は1例もない。水中で触媒反応を行う利点は、pHにより反応を制御できることや環境調和型であることなどがあげられる。本研究では、世界で初めて水溶性ポルフィリン錯体の合成に成功し、その構造をX線構造解析により決定した。X線構造解析の結果、軸位にアクアが配位子していることを明らかにした。1H MNRを用いた滴定実験により、第一pKaを7.26、第二pKaを10.42と決定した。.
71. Ichikawa, Koji; Nonaka, Kyoshiro; Matsumoto, Takahiro; Kure, Bunsho; Yoon, Ki-Seok; Higuchi, Yoshiki; Yagi, Tatsuhiko, Ogo, Seiji.*, Concerto Catalysis — Harmonising [NiFe]hydrogenase and NiRu Model Catalysts, Dalton Trans., 10.1039/b926061g, 39, 12, 2993, 2010.03.
72. Zheng, Chunbai; Kim, Kyoungmok; Matsumoto, Takahiro; Ogo, Seiji.*, The Useful Properties of H2O as a Ligand of a Hydrogenases Mimic, Dalton Trans., 10.1039/b921273f, 39, 9, 2218, 2010.03.
73. Kizaki, Tetsuro; Matsumoto, Takahiro; Ogo, Seiji.*, Dissolved N2 Sensing by pH-dependent Ru Complexes, Dalton Trans., 10.1039/b918940h, 39, 5, 1339, 2010.02.
74. Zheng, Chunbai; Inoki, Daisuke; Matsumoto, Takahiro; Ogo, Seiji.*, An Acid-Stable Organoruthenium Complex Suitable as a Bidentate Building Block, Chem. Lett., 10.1246/cl.2010.130, 39, 2, 130, 2010.01.
75. Kizaki, Tetsuro; Abe, Takeru; Matsumoto, Takahiro; Ogo Seiji.*, A pH-Stable Ruthenium(II)-based Sensing System for Dissolved Dinitrogen, Chem. Lett., 10.1246/cl.2010.128, 39, 2, 128, 2010.01, [URL].
76. Ichikawa, Koji; Matsumoto, Takahiro; Ogo, Seiji.* , Critical Aspects of [NiFe]hydrogenase Ligand Composition, Dalton Trans., 4304-4309, 2009.06.
77. Ogo, Seiji.*, Electrons form Hydrogen, Chem. Commun., 10.1039/b900297a, 23, 3317, 2009.06.
78. Matsumoto, Takahiro; Kure, Bunsho; Ogo, Seiji.*, Extraction of Electrons from H2 with a NiIRuI Catalyst., Chem. Lett. , 2008, 37, 970-971., 2008.08.
79. Kanemitsu, Hironobu; Uehara, Keiji; Fukuzumi, Shunichi; Ogo, Seiji.*, Isolation and Crystal Structures of Both Enol and Keto Tautomer Intermediates in a Hydration of an Alkyne-Carboxylic Acid Ester Catalyzed by Iridium Complexes in Water. , J. Am. Chem. Soc. , 130, 17141-17147., 2008.11.
80. Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji.*, pH-Dependent Isotope Exchange and Hydrogenation Catalysed by Water-soluble NiRu Complexes as Functional Models for [NiFe]hydrogenases. , Dalton Trans., 2008, 4747-4755. , 2008.07.
81. Ogo, Seiji;* Kabe, Ryota; Uehara, Keiji; Kure, Bunsho; Nishimura, Takashi; Menon, Saija C.; Harada, Ryosuke; Fukuzumi, Shunichi; Higuchi, Yoshiki; Ohhara, Takashi; Tamada, Taro; Kuroki, Ryota, A Dinuclear Ni(μ-H)Ru Complex Derived from H2, Science, 316, 585-587, 2007.04.
82. Kure, Bunsho; Fukuzumi, Shunichi; Ogo, Seiji.* , A New Water-soluble and Acid-stable Dinuclear Organoiridium Dinitrate Complex. , Chem. Lett., 36, 1468-1469, 2007.01.
83. Uehara, Keiji; Fukuzumi, Shunichi;* Ogo, Seiji.*, Synthesis and Crystal Structure of a New Water-Soluble Sulfur-Containing Palladacyclic Diaqua Complex, J. Organomet. Chem., 692, 499-504, 2007.01.
84. Ogo, Seiji;* Kabe, Ryota; Hayashi, Hideki; Harada, Ryosuke; Fukuzumi, Shunichi.*, Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step, Dalton Trans. , 4657-4663, 2006.08.
85. Ogo, Seiji;* Takebe, Yoshitaka; Uehara, Keiji; Yamazaki, Takayuki; Nakai, Hidetaka; Watanabe, Yoshihito; Fukuzumi, Shunichi.*, pH-Dependent C-C Coupling Reactions Catalyzed by Water-Soluble Palladacycle Aqua Catalysts in Water, Organometallics, 25, 331-338, 2006.01.
86. Kure, Bunsho; Ogo, Seiji;* Inoki, Daisuke; Nakai, Hidetaka; Isobe, Kiyoshi; Fukuzumi, Shunichi.*, Synthesis and Crystal Structure of an Open Capsule-Type Octanuclear Heterometallic Sulfide Cluster with a Linked Incomplete Double Cubane Framework without an Intramolecular Inversion Center, J. Am. Chem. Soc. , 127, 14366-14374, 2005.09.