Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Yasuya Nakayama Last modified date:2023.11.14

Associate Professor / Production system engineering / Department of Chemical Engineering / Faculty of Engineering

1. Takuya Kobayashi, Gerhard Jung, Yuki Matsuoka, Yasuya Nakayama, John J. Molina, Ryoichi Yamamoto, Direct numerical simulations of a microswimmer in a viscoelastic fluid, Soft Matter, 10.1039/d3sm00600j, 2023.08, We extend the SP method to study the dynamics of squirming and swirling particles in viscoelastic fluids, in order to elucidate the mechanism behind their swimming speed enhancement..
2. Yasuya Nakayama, Nonlinear Dielectric Decrement of Electrolyte Solutions: an Effective Medium Approach, Journal of Colloid and Interface Science, 10.1016/j.jcis.2023.05.046, 646, 354-360, 2023.05.
3. , [URL].
4. Ryoichi Yamamoto, John J. Molina, and Yasuya Nakayama, Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles, Soft Matter, 10.1039/D0SM02210A, 17, 16, 4226-4253, 2021.04, [URL].
5. Yuki Matsuoka, Yasuya Nakayama, Toshihisa Kajiwara, Prediction of shear-thickening of particle suspensions in viscoelastic fluids by direct numerical simulation, Journal of Fluid Mechanics, 10.1017/jfm.2021.5, 913, A38, arXiv:2109.08300 [physics.flu-dyn], 2021.03, [URL].
6. Yasuya Nakayama and Toshihisa Kajiwara, Flow Classification and Its Application to Fluid Processing, MATEC Web Conf., 10.1051/matecconf/202133302001, 333, 02001(6), 2021.01, [URL].
7. Yuki Matsuoka, Yasuya Nakayama, Toshihisa Kajiwara, Effects of viscoelasticity on shear-thickening in dilute suspensions in a viscoelastic fluid, Soft Matter, 10.1039/C9SM01736D, 16, 728-737, arXiv:2012.10404 [cond-mat.soft], 2019.12, [URL].
8. Yasuya Nakayama, Satoshi Esaki, Kenta Nakao, Toshihisa Kajiwara, Takahide Takeuchi, Koichi Kimura, and Hideki Tomiyama, Mixing characteristics of different kneading elements: An experimental study, AIP Conf. Proc., 10.1063/1.5121652, 2139, 1, 020005, 2019.08, [URL].
9. K. Sekiyama, S. Yamada, T. Nakagawa, Y. Nakayama, T. Kajiwara, Partially Filled Flow Simulation Using Meshfree Method for High Viscosity Fluid in Plastic Mixer, International Polymer Processing, 10.3139/217.3727, 34, 2, 279-289, 2019.05, [URL].
10. Yasuya Nakayama, Takemitsu Hiroki, Toshihisa Kajiwara, Koichi Kimura, Takeuchi Takahide and Hideki Tomiyama, Characterization of melt-mixing in extrusion: Finite-time Lyapunov exponent and flow pattern structure, AIP Conf. Proc., 10.1063/1.5088290, 2065, 030032, 2019.02, [URL].
11. , [URL].
12. Yasuya Nakayama, Hiroki Takemitsu, Toshihisa Kajiwara, Koichi Kimura, Takahide Takeuchi, Hideki Tomiyama, Improving mixing characteristics with a pitched tip in kneading elements in twin-screw extrusion, AIChE Journal, 10.1002/aic.16003, 64, 4, 1424-1434, arXiv:1811.02159 [physics.flu-dyn], 2018.04, [URL].
13. Yasuya Nakayama, Nariyoshi Nishihira, Toshihisa Kajiwara, Hideki Tomiyama, Takahide Takeuchi, Koichi Kimura, Effects of pitched tips of novel kneading disks on melt mixing in twin-screw extrusion, Nihon Reoroji Gakkaishi (Journal of the Society of Rheology, Japan), 10.1678/rheology.44.281, 44, 5, 281-288, arXiv:1612.08121 [physics.flu-dyn], 2016.12, [URL].
14. Yasuya Nakayama, Tatsunori Masaki, Toshihisa Kajiwara, Strain Mode of General Flow: Characterization and Implications for Flow Pattern Structures
, AIChE Journal, 10.1002/aic.15228, 62, 7, 2563-2569, arXiv:1703.06557 [physics.flu-dyn], 2016.03, [URL].
15. Yasuya Nakayama, David Andelman, Differential capacitance of the electric double layer: The interplay between ion finite size and dielectric decrement, Journal of Chemical Physics, 10.1063/1.4906319, 142, 4, 044706, arXiv:1411.2092 [cond-mat.soft], 2015.01, [URL].
16. Kunihiro Hirata, Hiroshi Ishida, Motohito Hiragohri, Yasuya Nakayama, Toshihisa Kajiwara, Effectiveness of a backward mixing screw element for glass fiber dispersion in a twin-screw extruder, Polymer Engineering & Science, 10.1002/pen.23752, 54, 9, 2005-2012, 2014.09, [URL].
17. , [URL].
18. , [URL].
19. Kunihiro Hirata, Hiroshi Ishida, Motohito Hiragohri, Yasuya Nakayama, Toshihisa Kajiwara, Experimental assessment of dispersion failure of glass fiber reinforced plastics in a twin-screw extruder, International Polymer Processing, 10.3139/217.2704, 28, 4, 368-375,, 2013.08, [URL].
20. John J. Molina, Yasuya Nakayama, Ryoichi Yamamoto, Hydrodynamic Interactions of Self-Propelled Swimmers, Soft Matter, 10.1039/C3SM00140G, 9, 4923-4936, 2013.04, [URL].
21. Yasuya Nakayama and Toshihisa Kajiwara, Quantifying hierarchical mixture quality in polymer composite materials: structure and inhomogeneity in multiple scales, Polymer, 10.1016/j.polymer.2012.12.056, 54, 3, 1227–1233, 2013.
DOI:10.1016/j.polymer.2012.12.056, 2013.02, [URL].
22. Yasuya Nakayama, Kiyoyasu Kataoka, and Toshihisa Kajiwara, Dynamic shear responses of polymer-polymer interfaces, Nihon Reoroji Gakkaishi (Journal of the Society of Rheology, Japan), 10.1678/rheology.40.245, 40, 5, 245-252, 2012.
DOI:10.1678/rheology.40.245, 2012.12, [URL].
23. Toshihisa KAJIWARA and Yasuya NAKAYAMA,
Capturing the Efficiency of a Melt-Mixing Process for Polymer Processing
, Journal of Chemical Engineering of Japan, 10.1252/jcej.11we081, 44, 11, 831-839, 2011.06, [URL].
24. Yasuya Nakayama, Eiji Takeda, Takashi Shigeishi, Hideki Tomiyama, Toshihisa Kajiwara, Melt-Mixing by Novel Pitched-Tip Kneading Disks in a co-rotating Twin-Screw Extruder, Chemical Engineering Science, 10.1016/j.ces.2010.10.022, 66, 1, 103-110, 2011.
arXiv:1004.2273 [physics.flu-dyn], 2011.01, [URL].
25. Ryoichi Yamamoto, Yasuya Nakayama, Kang Kim, SMOOTHED PROFILE METHOD TO SIMULATE COLLOIDAL PARTICLES IN COMPLEX FLUIDS, International Journal of Modern Physics C, 10.1142/S0129183109014515, 20, 9, 1457-1465, 2009.09, [URL].
26. , [URL].
27. Takuya Iwashita, Yasuya Nakayama, Ryoichi Yamamoto , A Numerical Model for Brownian Particles Fluctuating in Incompressible Fluids, Journal of the Physical Society of Japan, vol.77, no.7, 074007
, 2009.04, [URL].
28. Iwashita, Takuya, Yasuya Nakayama, Ryoichi Yamamoto, Velocity Autocorrelation Function of Fluctuating Particles in Incompressible Fluids
— Toward Direct Numerical Simulation of Particle Dispersions —
, Progress of Theoretical Physics Supplement, 178, 86-91, No. 178 pp. 86-91, 2009.01, [URL].
29. Y. Nakayama, K. Kim, and R. Yamamoto, Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method, European Physical Journal E, 10.1140/epje/i2007-10332-y, 26, 4, 361-368, 10.1140/epje/i2007-10332-y,
arXiv:cond-mat/0601322 [cond-mat.soft]
, 2008.08, [URL].
30. Ryoichi Yamamoto, Kang Kim, Yasuya Nakayama, Kunimasa Miyazaki, David R. Reichman, On the Role of Hydrodynamic Interactions in Colloidal Gelation, Journal of the Physical Society of Japan, vol.77, no.8, 084804
, 2008.08, [URL].
31. Yasuya Nakayama, Kang Kim and Ryoichi Yamamoto, Smoothed Profile Method for Direct Simulation of Flowing (Charged) Colloids in Solvents, AES Technical Reviews International Journal of Nano and Advanced Engineering Materials, 1 (2008), pp.21-28, 2008.01, [URL].
32. Ryoichi Yamamoto, Kang Kim and Yasuya Nakayama, Strict simulations of non-equilibrium dynamics of colloids, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 311, pp.42-47, 2007.12, [URL].
33. , [URL].
34. Eiichiro Inoue, Tetsuharu Tsuji, Toshihisa Kajiwara, Kazumori Funatsu, Yasuya Nakayama, Simulation for mixing process in the solid conveying zone of a twin-screw extruder, Seikei Kakou, vol.18, pp.826-830, 2006.11, [URL].
35. Kang Kim,Yasuya Nakayama, and Ryoichi Yamamoto, Direct Numerical Simulations of Electrophoresis, Physical Review Letters, 10.1103/PhysRevLett.96.208302, 96, 208302 (4pages), arXiv:cond-mat/0601534 [cond-mat.soft], 2006.05, [URL].
36. Yasuya Nakayama, Kang Kim, Ryoichi Yamamoto, Hydrodynamic effects in colloidal dispersions studied by a new efficient direct simulation, AIP Conference Proceedings, vol.832, pp.245-250, 2006.05, [URL].
37. Kang Kim, Yasuya Nakayama, Ryoichi Yamamoto, Simulating electrohydrodynamics in charged colloidal dispersions: A smoothed profile method, AIP Conference Proceedings, vol.832, pp.251-256, 2006.05, [URL].
38. Ryoichi Yamamoto, Kang Kim and Yasuya Nakayama, KAPSEL: Kyoto Advanced Particle Simulator for Electrohydrodynamics -Toward Direct Numerical Simulations of Colloidal Dispersions-, KONA Powder and Particle Journal, 10.14356/kona.2006019, 24, 167-182, Vol.24,pp.167-182, 2006.01, [URL].
39. Ryoichi Yamamoto, Yasuya Nakayama, Kang Kim, A Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions, Computer Physics Communications, vol.169, pp.301-304, 2005.07, [URL].
40. Kang Kim, Yasuya Nakayama, Ryoichi Yamamoto, A smoothed profile method for simulating charged colloidal dispersions, Computer Physics Communications, vol.169, pp.104-106, 2005.07, [URL].
41. Yasuya Nakayama and Ryoichi Yamamoto, Simulation Method to Resolve Hydrodynamic Interactions in Colloidal Dispersions, Physical Review E, vol.71, pp.036707 (7 pages), 2005.03, [URL].
42. Ryoichi Yamamoto, Yasuya Nakayama, and Kang Kim, A Smooth Interface Method for Simulating Liquid Crystal Colloid Dispersions, Journal of Physics: Condensed Matter, vol.16, pp.S1945-S1955, 2004.05, [URL].
43. Hirokazu Fujisaka and Yasuya Nakayama, Self-similarity and energy-dissipation rate fluctuations in turbulence, Progress of Theoretical Physics Supplement, No. 150, pp.57-63, 2003.06, [URL].
44. Hirokazu Fujisaka, Yasuya Nakayama, Takeshi Watanabe, and Siegfried Grossmann, Scaling Hypothesis Leading to Generalized Extended Self-Similarity in Turbulence, Physical Review E, vol.65, pp.046307 (16 pages), 2002.04, [URL].
45. Hirokazu Fujisaka, Yasuya Nakayama, Intermittency and exponent field dynamics in developed turbulence, Physical Review E, vol.67, pp.026305 (10 pages), 2003.02, [URL].
46. Yasuya Nakayama, Takeshi Watanabe, and Hirokazu Fujisaka, Self-similar fluctuation and large deviation statistics in the shell model of turbulence, Physical Review E, vol.64, pp.056304(13 pages), 2001.11, [URL].
47. Takeshi Watanabe, Yasuya Nakayama, Hirokazu Fujisaka, Large deviation statistics of the energy-flux fluctuation in the shell model of turbulence, Physical Review E, 10.1103/PhysRevE.61.R1024, 61, 2, R1024-R1027, vol.61, pp.R1024-R1027, 2000.02, [URL].