九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
田中 悟(たなか さとる) データ更新日:2023.06.27

教授 /  工学研究院 エネルギー量子工学部門 応用物理学講座


主な研究テーマ
グラフェン転写の科学と応用
キーワード:グラフェン転写,新奇電子物性
2017.04~2020.03.
IV族原子層形成と電子物性
キーワード:2次元物質,グラフェン,シリセン、ゲルマネン,スタネン
2016.04~2020.03.
・SiC表面の自己形成ナノ構造に関する研究
キーワード:ワイドギャップ半導体,電子デバイス,ナノ構造,自己組織化,ボトムアップテクノロジー
2000.04~2014.03.
・SiC表面自己改質効果に関する研究
キーワード:ワイドギャップ半導体,グラフェン,電子デバイス,光デバイス,ナノ構造,自己組織化,ボトムアップテクノロジー
2000.04~2014.03.
・III族窒化物系半導体の結晶成長と光物性に関する研究
キーワード:ワイドギャップ半導体,新結晶構造,エピタキシー,MBE,紫外線LED
1998.04~2014.03.
・グラフェン半導体の形成と物性に関する研究
キーワード:グラフェン,電子デバイス,ナノ構造
2006.04~2014.03.
・SiC電子デバイスに関する研究
キーワード:ワイドギャップ半導体,MOSFET,ナノ構造
2000.04~2014.03.
研究業績
主要著書
主要原著論文
1. Kohei Fukuma, Anton Visikovskiy , Takushi Iimori, Toshio Miyamachi, Fumio Komori, Satoru Tanaka, Formation of graphene nanoribbons on the macrofacets of vicinal 6H-SiC(0001) surfaces, PHYSICAL REVIEW MATERIALS, 10.1103/PhysRevMaterials.6.124003, 6, 124003-1-124003-8, 2022.12, Thermal decomposition of vicinal 6H-SiC(0001) surfaces with miscut angles toward the [11 ̄00] direction
results in the appearance of pairs of (0001) macroterraces and (11 ̄0n) macrofacets covered with graphene, as
follows. A carpetlike carbon layer grows on the surface, covering both the macroterraces and macrofacets; it
forms a (6R3 × 6R3) buffer layer on the former ones, whereas its partial periodic bonding with the SiC steps
on the latter ones generates a pseudographene nanoribbon (pseudo-GNR) array. The nanoribbons have a width of 1.7–1.8 nm and are aligned in the [112 ̄0] direction with a spatial periodicity of 3.3 nm. Scanning tunneling spectroscopy at a nanoribbon indicated a 0.4–0.5 eV energy gap and the Raman spectroscopy analysis of the pseudo-GNR array showed the absence of the 2D peak and the polarization dependence of the G and D peaks, which is typical of the armchair-edge nanoribbon..
2. Iimori Takushi、Visikovskiy Anton、Imamura Hitoshi、Miyamachi Toshio、Kitamura Miho、Horiba Koji、Kumigashira Hiroshi、Mase Kazuhiko、Nakatsuji Kan、Tanaka Satoru、Komori Fumio, Electronic structure of 3 degree-twisted bilayer graphene on 4H-SiC(0001), Physical Review Materials, 10.1103/PhysRevMaterials.5.L051001, 5, L051001-1-L051001-6, 2021.03.
3. Imamura, H., Visikovskiy, A., Uotani, R., Kajiwara, T., Ando, H., Iimori, T., Iwata, K., Miyamachi, T., Nakatsuji, K., Mase, K., Shirasawa, T., Komori, F. & Tanaka, S., Twisted bilayer graphene fabricated by direct bonding in a high vacuum, Applied Physics Express, 13, 7, 075004, 2020.06.
4. Shingo Hayashi, Anton Visikovskiy, Takashi Kajiwara, Takushi Iimori, Tetsuroh Shirasawa, Kan Nakastuji, Toshio Miyamachi, Shuhei Nakashima, Koichiro Yaji, Kazuhiko Mase, Fumio Komori, Satoru Tanaka, Triangular lattice atomic layer of Sn(1 × 1) at graphene/SiC(0001) interface, Applied Physics Express, 11, 1, 015202, 2017.12, Sn atomic layers attract considerable interest owing to their spin-related physical properties caused by their strong spin–orbit interactions. We performed Sn intercalation into the graphene/SiC(0001) interface and found a new type of Sn atomic layer. Sn atoms occupy on-top sites of Si-terminated SiC(0001) with in-plane Sn–Sn bondings, resulting in a triangular lattice. Angle-resolved photoemission spectroscopy revealed characteristic dispersions at K" and M" points, which agreed well with density functional theory calculations. The Sn triangular lattice atomic layer at the interface showed no oxidation upon exposure to air, which is useful for characterization and device fabrication ex situ..
5. 田中 悟, ANTON VISIKOVSKIY, 梶原隆司, 小森 文夫, 吉村, 飯盛 たくし, 木本 真一, Graphene/SiC(0001) interface structures induced by Si intercalation and their influence
on electronic properties of graphen, PHYSICAL REVIEW B, 94, 245421, 2016.12, Epitaxial graphene growth on SiC surfaces is considered advantageous in terms of device application. However, the first graphitic layer on SiC transforms to a buffer layer because of strong coupling with the substrate. The properties of several subsequent layers are also significantly degraded. One method to decouple graphene from the substrate is Si intercalation. In the present work, we report observation and analysis of interface structures formed by Si intercalation in between the graphene layer and the SiC(0001) surface depending on Si coverage and influence of these interfaces on graphene electronic structure by means of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and theoretical first-principles calculations. The STM appearance of observed periodic interface structures strongly resembles previously known Si-rich phases on the SiC(0001) surface. Based on the observed range of interface structures we discuss the mechanism of graphene layer decoupling and differences in stability of the Si-rich phases on clean SiC(0001) and in the graphene/SiC(0001) interface region. We also discuss a possibility to tune graphene electronic properties by interface engineering..
6. H. A. Hafez, I. Al-Naib, M. M. Dignam, Y. Sekine, K. Oguri, F. Blanchard, D. G. Cooke, Tanaka Satoru, F. Komori, H. Hibino, T. Ozaki, Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene, Phys. Rev. B, 91, 035422, 2015.10.
7. A. Endo, F. Komori, K. Morita, T. Kajiwara, Tanaka Satoru, Highly Anisotropic Parallel Conduction in the Stepped Substrate of Epitaxial Graphene Grown on Vicinal SiC, J. Low Temp. Phys., 179, 237, 2015.09.
8. S. W. King, Tanaka Satoru, R. F. Davis, R. J. Nemanich, Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces, J. Vac. Sci. Tech. A, 33, 5, 05E105, 2015.07.
9. H. Tochihara, T. Shirasawa, T. Suzuki, T. Miyamachi, T. Kajiwara, K. Yagyu, S. Yoshizawa, T. Takahashi, Tanaka Satoru, F. Komori, Scanning tunneling microscopic and spectroscopic studies on a crystalline silica monolayer epitaxially formed on hexagonal SiC(000-1) surfaces, Appl. Phys. Lett. , 104, 051601, 2015.04.
10. Hagihara Yoshihito, Tanaka Satoru, Graphene nanoribbons grown on epitaxial SixCyOz layer on vicinal SiC(0001) surfaces by chemical vapor deposition, Appl. Phys. Express, 6, 055102, 2013.04.
11. Kajiwara Kakashi, Tanaka Satoru, Graphene nanoribbons on vicinal SiC surfaces by molecular beam epitaxy, Physical Review B 87, 121407 (2013).
, 87, 121407, 2013.03, We present a method of producing a densely ordered array of epitaxial graphene nanoribbons (GNRs) using vicinal SiC surfaces as a template, which consists of ordered pairs of (0001) terraces and nanofacets. Controlled selective growth of graphene on approximately 10 nm wide (0001) terraces with 10 nm spatial intervals allows GNR formation. By selecting the vicinal direction of SiC substrate, [1¯100], well-ordered GNRs with predominantly armchair edges are obtained. These structures, the high-density GNRs, enable us to observe the electronic structure at K points by angle-resolved photoemission spectroscopy, showing a clear band-gap opening of at least 0.14 eV..
12. Susumu Kamoi, Kenji Kisoda, Noriyuki Hasuike, Hiroshi Harima, Kouhei Morita, Satoru Tanaka, Akihiro Hashimoto, Hiroki Hibino, A Raman imaging study of growth process of few-layer epitaxial graphene on vicinal 6H–SiC, Diamond & Related Materials, 25, 80-83, 2012.03, Few-layer epitaxial graphenes grown on vicinal 6H–SiC (0001) were characterized by confocal Raman imaging.
In the beginning of the growth, the surface of SiC substrate was covered with monolayer graphene. Next,
few-layer graphenes started to grow toward directions perpendicular to [11–20] of the SiC substrate. The
shift in the G-peak was not straightforward with the increase in number of graphene layers. This result can
be interpreted that the in-plane compressive stress from the substrate depends on the domain size of graphene.
The 2D-peak frequency shifted to higher frequency side due to strong compressive strain from the
substrate with increasing of the growth times..
13. 田中 悟,森田 康平,日比野 浩樹, SiC表面上のエピタキシャルグラフェンの成長, 表面科学, 32, 6, 381, 2011.08.
14. 田中 悟, SiCナノ表面上のエピタキシャルグラフェン形成, 日本結晶成長学会誌, 37, 3, 186, 2010.10.
15. K. Hayashi, S. Mizuno, S. Tanaka, LEED analysis of graphite films on vicinal 6H-SiC(0001) surface, Journal of Novel Carbon Resource Sciences, 2, 0001, 17, 2010.08.
16. Kan Nakatsuji, Yuki Shibata, Ryota Niikura, Fumio Komori, Kouhei Morita, Satoru Tanaka, Shape, width, and replicas of π bands of single-layer graphene grown on Si-terminated vicinal SiC(0001), Phys. Rev. B, 82, 4, 045428, 2010.07.
17. K. Kisoda, S. Kamoi, N. Hasuike, H. Harima, K. Morita, S. Tanaka, A. Hashimoto, Few-layer epitaxial graphene grown on vicinal 6H–SiC studied by deep ultraviolet Raman spectroscopy, Appl. Phys. Lett., 97, 3, 033108, 2010.05.
18. S. Odaka, H. Miyazaki, S.-L. Li, A. Kanda, K. Morita, S. Tanaka, Y. Miyata, H. Kataura, K. Tsukagoshi, Y. Aoyagi, Anisotropic transport in graphene on SiC substrate with periodic nanofacets, Appl. Phys. Lett., 96, 062111, 2010.01.
19. S. Tanaka, K. Morita, H. Hibino, Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces, Phys. Rev. B, Rapid Communication, 81, 041406(R), 2010.01.
20. T. Shirasawa, K. Hayashi, H. Yoshida, S. Mizuno, S. Tanaka, T. Muro, Y. Tamenori, Y. Harada, T. Tokushima, Y. Horikawa, E. Kobayashi, T. Kinoshita, S. Shin, T. Takahashi, Y. Ando, K. Akagi, S. Tsuneyuki, H. Tochihara, Atomic-layer-resolved bandgap structure of an ultrathin oxynitride-silicon film epitaxially grown on 6H-SiC(0001), Phys. Rev. B, 79, 24, 241301(R), 2009.06.
21. K. Hayashi, K. Morita, S. Mizuno, H. Tochihara, S. Tanaka, Stable surface termination on vicinal 6H-SiC(0001) surfaces, Surf. Sci., 603, 566, 2009.05.
22. A. Hashimoto, H. Terasaki, A. Yamamoto, S. Tanaka, Electron Beam Irradiation Effect for Solid C60 Epitaxy on Graphene, Diamond and Related Materials, 18, 388, 2009.04.
23. A. Hashimoto, K. Iwao, S. Tananka, A. Yamamoto, van der Waals epitaxy of solid C 60 on graphene sheet, Diamond and Related Materials, 17, 1622, 2008.04.
24. M. Fujii, S. Tanaka, Ordering distance of surface nanofacets on vicinal 4H-SiC(0001), Phys. Rev. Lett., 99, 016102, 2007.07.
25. M. Ebihara, S. Tanaka, I. Suemune, Nucleation and growth mode of GaN on vicinal SiC surfaces, Jpn. J. Appl. Phys., 46, L348, 2007.04.
26. T. Shirasawa ,K. Hayashi, S. Mizuno, S. Tanaka, K. Nakatsuji, F. Komori, H. Tochihara, Epitaxial silicon oxynitride layer on a 6H-SiC(0001) surface, Phys. Rev. Lett., 98, 136105, 2007.02.
27. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V. T. Tikhonchuk, Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures, Phys. Rev. Lett. , 96, 166101, 2006.11.
28. H. Nakagawa, S. Tanaka, I. Suemune, Self-ordering of nanofacets on vicinal SiC surfaces, Phys. Rev. Lett., 91, 226107, 2003.11.
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. S. Tanaka, H. Imamura, R. Uotani, T. Kajiwara, A. Visikovskiy, T. Iimori, T. Miyamachi, K. Nakatsuji, K. Mase, F. Komori, Rotation-angle controlled twisted bilayer graphene, 12th International Symposium on Atomic Level Characterizations for New Materials and Devices '19, 2019.10, Twisted bilayer graphene (TBG) shows variety of electronic characteristics depending on its in-plane rotation-angle due to moiré potential. The Fermi velocity decreases dramatically with the angle less than 5° and moreover, superconductivity is emerged at approximately 1° magic angle. TBG has been fabricated by tape-exfoliation and transferring processes. However, these processes have potential difficulties in obtaining large area, precise control of the rotation angle, and contaminant-free interlayer structures. A large area sample is especially essential to evaluate electronic structure by macro-probe characterizations such as angle-resolved photoemission spectroscopy (ARPES). Thus, we aimed at solving these problems by direct transfer of newly developed CVD grown graphene on SiC in vacuum..
2. S. Tanaka, H. Imamura, R. Uotani, T. Kajiwara, A. Visikovskiy, T. Iimori, T. Miyamachi, K. Nakatsuji, K. Mase, F. Komori, Fabrication and characterization of twisted bilayer graphene, Materials Research Meeting 2019 December 10-14, 2019, Yokohama, Japan, 2019.12, Twisted bilayer graphene (TBG) exhibits unique electronic characteristics depending on its in-plane rotation-angle due to moiré potential. The Fermi velocity decreases dramatically with the angle less than 5° and moreover, superconductivity is emerged at approximately 1° magic angle. TBG has been fabricated by tape-exfoliation of CVD graphene on metal substrates and transferring processes. However, these processes have potential problems in obtaining large area, precise control of the rotation angle, and contamination. A large area sample is especially desired to evaluate electronic structure by angle-resolved photoemission spectroscopy (ARPES), which normally measures macroscopic area. Therefore, we aimed at solving these problems by direct transfer of newly developed CVD grown graphene on SiC..
3. 田中 悟, SiC ウエハ上のグラフェンナノ構造とデバイス応用, 第7回 ワイドバンドギャップ半導体デバイスに関わる超精密加工プロセス研究分科会 講演会 第28回 精密加工プロセス研究会 講演会, 2015.06.
4. 田中 悟, Formation of graphene lateral superlattices on self-ordered SiC facets, 第34回電子材料シンポジウム(30th Electronic Materials Symposium), 2015.07.
5. S. Tanaka, ナノ表面構造制御によるヘテロエピタキシー, 第55回真空に関する連合講演会, 2014.11.
6. S. Tanaka, MBE法による傾斜SiC表面上へのグラフェンナノリボンの成長, 第33回電子材料シンポジウム(30th Electronic Materials Symposium), 2014.07.
7. 田中 悟, SiC表面ナノ構造上のグラフェンナノリボンの形成と電子物性, 日本物理学会第66回年次大会領域9,領域7合同シンポジウム 主題:表面界面状態の理解と触媒反応・電子デバイスへの新展開, 2014.03.
8. 田中 悟, グラフェンナノ構造の形成と構造ー電子物性相関, 早稲田大学各務記念材料技術研究所オープンセミナー, 2011.10.
9. S. Tanaka, Graphene nanoribbons on vicinal SiC surfaces, 2011.10.
10. S. Tanaka, Formation of graphene nanostructures on vicinal SiC surfaces, 2011 International Conference on Solid State Devices and Materials, 2011.09.
11. S. Tanaka, Formation of epitaxial grapehene nanostructures and correlation with electronic structures, 第30回電子材料シンポジウム(30th Electronic Materials Symposium), 2011.07.
12. 田中 悟, SiCナノ表面上へのエピタキシャルグラフェンの形成と評価, 日本物理学会第65回年次大会領域7,領域4,領域6,領域9合同シンポジウム 主題:グラフェンの生成・評価と物性 -最前線と展望-, 2010.03.
13. S. Tanaka, K. Morita, N. Uehara, K. Nakatsuji, T. Yoshimura, F. Komori, Self-organized graphene nanoribbons on vicinal SiC surfaces, International Symposium on Graphene Dvices (ISGD) 2010, 2010.10.
14. 田中 悟, SiCナノ表面構造とヘテロエピタキシー, 真空・表面科学合同講演会, 2010.11.
15. Satoru Tanaka, Kouhei Morita, Naoya Uehara, Hiroki Hibino, Growth mechanisms of graphene on vicinal SiC surfaces, European Materials Society (E-MRS) Spring Meeting, 2010.06.
16. 田中 悟, 微傾斜SiC表面上のナノグラフェン構造の形成と物性, 東北大学電気通信研究所・共同プロジェクト研究会「 次世代デバイス応用を企図したグラフェン形成機構の解明及び制御」, 2009.10.
17. 田中 悟,森田康平,萩原好人,スレイ チェンダ, SiCナノ周期表面上のグラフェンナノ構造, 電気学会光量子デバイス研究会, 2009.09.
18. 田中 悟, SiC表面上へのエピタキシャルグラフェンの形成と結晶構造, 日本物理学会第19回格子欠陥シンポジウム, 2009.09.
19. Akihiro Hashimoto, Hiromitsu Tearsaki, Kouhei Morita, Satoru Tanaka and Hiroki Hibino, A breakthrough toward wafer-size bilayer graphene transfer, 2009 MRS Fall Meeting, 2009.12.
20. Akihiro Hashimoto, Hiromitsu Tearsaki, Kouhei Morita, Satoru Tanaka and Hiroki Hibino, A breakthrough toward wafer-size bilayer graphene transfer, ICSCRM2009, 2009.10.
21. Kohei Morita, Hiroki Hibino, Kan Nakatsuji, Fumio Komori, Seigi Mizuno, Satoru Tanaka, Spatially uniform-thick bi-layer graphene on vicinal SiC surfaces, ICSCRM2009, 2009.10.
22. Yoshihito Hagihara, Kan Nakatsuji, Fumio Komori, Satoru Tanaka, Rippled Graphene Nanostructures on vicinal SiC surfaces, ICSCRM2009, 2009.10.
23. Srey Chenda, Satoru Tanaka , Formation of graphene nanowires on vicinal SiC surfaces, MRS 2009 Fall Meeting, 2009.12.
24. K. Hayashi, ,K. Morita. M. Suzuki, S. Mizuno, S. Tanaka, and H. Tochihara, LEED Analysis of Stacking Sequence of Graphene Layers Formed on Vicinal SiC(0001) Surface, International Symposium on Surface Science and Nanotechnology (ISSS-5), 2008.11.
25. 田中 悟, SiCナノ表面と表面自己改質によるヘテロ構造の形成, NCCG38, 2008.11.
26. S. Tanaka, K. Motita, S. Chenda, Y. Hagihara, K. Hayashi, S. Mizuno, K. Nakatsuji, F. Komori, Graphene formation on vicinal SiC surfaces, 岡崎Conference, 2009.02.
27. S. Tanaka, K. Hayashi, K. Motita, S. Chenda, Y. Hagihara, S. Mizuno, H. Hibino, T. Shirasawa, K. Nakatsuji, F. Komori, Uniform thickness distribution of graphene layers on vicinal SiC surfaces, ISGD2008 (2008 International Symposium on Graphene Devices), 2008.11.
28. Satoru Tanaka, Srey Chenda, Formation of graphene nanowires on vicinal SiC surfaces, MRS 2008 Fall Meeting, 2008.12.
29. Akihiro Hashimoto, Kohsuke Iwao, Satoru Tanaka and Akio Yamamoto, A New Formation Method of Large Area Graphene on SiO2/Si Substrate, The 18th European Diamond and Related Materials, 2007.09.
30. Akihiro Hashimoto, Kohsuke Iwao, Satoru Tanaka and Akio Yamamoto, Van der Waals Epitaxy of Solid Fullerene on Graphene Sheet, The 18th European Diamond and Related Materials, 2007.09.
31. Akihiro Hashimoto, Kohsuke Iwao, Satoru Tanaka and Akio Yamamoto, Transfer of Large Area Graphene Sheets from Carbonized 6H-SiC by a Direct Bonding Technique, MRS 2007 Fall Meeting, 2007.11.
32. Tetsuroh Shirasawa, Kenjiro Hayashi, Seigi Mizuno, Hiroshi Tochihara, Satoru Tanaka, Epitaxial SiO/SiN superstructure on 6H-SiC surface, 第26回電子材料シンポジウム, 2007.07.
33. Satoru Tanaka, Masahiro Fujii, Self-ordering of surface nanofacets on vicinal 4H-SiC(0001), Materials Research Society Fall Meeting, 2007.11.
34. Satoru Tanaka, Masahiro Fujii, Self-ordering of surface nano-facets on vicinal 4H-SiC, ECSCD9, 2007.09.
35. Masato Ebihara, Satoru Tanaka and Ikuo Suemune, Initial step-flow growth of GaN on Ga-adsorbed SiC nanofacet surfaces, 2006 Materials Research Society Fall Meeting, 2006.11.
特許出願・取得
特許出願件数  7件
特許登録件数  0件
学会活動
所属学会名
日本表面真空学会
日本物理学会
応用物理学会
日本物理学会
応用物理学会
Materials Research Society
学協会役員等への就任
2021.04~2024.03, 日本真空表面学会九州支部, 幹事.
2019.04~2021.03, 日本物理学会, 運営委員.
2007.04~2013.03, 電気学会先端量子ビームとナノ応用技術調査専門委員会, 運営委員.
2009.04~2013.03, 日本結晶成長学会, 幹事.
2009.04~2012.03, 応用物理学会, 幹事.
学会大会・会議・シンポジウム等における役割
2017.11.22~2017.11.25, ISGE2017, シンポジウムオーガナイザー,論文委員.
2016.08.07~2016.08.12, ICCGE18, シンポジウムオーガナイザー,論文委員.
2010.09.23~2010.03.26, 日本物理学会平成22年度秋季大会, 座長(Chairmanship).
2010.03.21~2010.03.24, 日本物理学会第65回年次大会, 座長(Chairmanship).
2012.09.23~2013.09.28, IUMRS-ICEM 2012, シンポジウムオーガナイザー,論文委員.
2007.10.15~2008.10.19, International Conference on Silicon Carbide and Related Materials 2007, 実行委員.
2006.10, International Workshop on Nitride Semiconductors 2006, 実行委員.
学会誌・雑誌・著書の編集への参加状況
2011.04~2012.03, JJAP/APEX, 国内, 編集委員.
2011.06~2011.10, 日本結晶成長学会誌, 国内, ゲスト編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2010年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
Sunway大学, Malaysia, 2020.03~2020.03.
マレーシア工科大学, Malaysia, 2019.12~2019.12.
CEAグルノーブル研究所, France, 2000.09~2001.02.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2019年度~2022年度, 基盤研究(B), 代表, 回転角制御モアレ積層系2層グラフェンの作製と物性評価.
2008年度~2010年度, 一般研究(B), 分担, シリコンカーバイド上の酸窒化シリコン膜とその上に形成する薄膜の構造解析.
2009年度~2011年度, 一般研究(A), 分担, 表面電子励起状態および吸着子のダイナミクス.
2009年度~2011年度, 一般研究(A), 分担, ウェハスケール表面構造制御を用いた単結晶グラフェン基板創製.
2002年度~2004年度, 一般研究(A), 代表, 原子レベル表面状態制御による低欠陥窒化物半導体のヘテロエピタキシー.
2001年度~2003年度, 一般研究(B), 代表, III族窒化物半導体量子ドットLED・レーザの開発研究.
1997年度~1998年度, 奨励研究(A), 代表, III族系窒化物半導体量子ドットの成長機構の解明.
競争的資金(受託研究を含む)の採択状況
2018年度~2020年度, NTT戦略リソース, 代表, SiC表面へのグラフェン転写によるナノ構造形成と電子状態制御.
2016年度~2017年度, 兵庫県COE, 分担, 次世代半導体表面構造を高品質形成制御する超小型専用装置の開発.
2006年度~2007年度, JSTシーズ試験研究, 代表, 自己組織化ナノ表面を活用した高品質SiC基板の実用化研究.
共同研究、受託研究(競争的資金を除く)の受入状況
2022.04~2023.03, 代表, m面SiC基板の表面平坦化に関する研究.
2021.04~2022.03, 代表, m面SiC基板の表面平坦化に関する研究.
2020.04~2021.03, 代表, m面SiC基板の表面平坦化に関する研究.
2020.04~2021.03, 代表, SiC表面へのグラフェン転写によるナノ構造形成と電子状態制御.
2019.04~2019.03, 代表, m面SiC基板の表面平坦化に関する研究.
2018.04~2019.03, 代表, SiC表面へのグラフェン転写によるナノ構造形成と電子状態制御.
2017.04~2018.03, 代表, m面SiC基板の表面平坦化に関する研究.
2016.04~2017.03, 代表, m面SiC基板の表面平坦化に関する研究.
2015.10~2016.03, 代表, SiC基板の表面平坦化に関する研究.
2014.10~2014.03, 代表, SiC基板の表面構造制御とデバイス適用に関する研究.
2013.04~2014.03, 代表, ヘテロエピタキシャルグラフェンに関する研究.
2012.04~2013.03, 代表, ヘテロエピタキシャルグラフェンに関する研究.
2009.10~2010.06, 代表, SiC表面の電子ビーム回折による評価.
2009.04~2010.03, 代表, 傾斜SiC基板上のグラフェン成長に関する研究.
寄附金の受入状況
2017年度, パナソニック, グラフェン研究のため.
2016年度, ケニックス, グラフェン研究のため.
2015年度, ケニックス, グラフェン研究.
2010年度, ユニバーサルシステムズ, グラフェン研究.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。