九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
西田 稔(にしだ みのる) データ更新日:2020.07.27

教授 /  総合理工学研究院 物質科学部門 固体材料物性工学講座結晶物性工学研究分野


主な研究テーマ
形状記憶合金の微細構造解析と応用
キーワード:形状記憶・超弾性合金、強磁性形状記憶合金、マルテンサイト変態
1983.12.
走査電子顕微鏡法による結晶性材料の相変態挙動の解析
キーワード:走査電子顕微鏡,その場観察
2015.04.
Ti合金の微細構造解析と応用
キーワード:Ti合金、電子顕微鏡、ω変態
1983.12.
従事しているプロジェクト研究
研究成果展開事業産学共創基礎基盤研究プログラム(ヘテロ構造制御)
2017.04~2020.03, 代表者:津﨑兼彰, 九州大学, 九州大学
鉄鋼における水素/マルテンサイト変態相互作用の定量的・理論的解明と水素利用材料の創製~利用可能な新固溶元素獲得を目指してにおいて『熱弾性マルテンサイト変態におよぼす水素の影響解析』を実施..
研究業績
主要著書
1. 西田稔, 材料開発のための顕微鏡法と応用写真集, 日本金属学会, P169, 2006.05.
2. 西田稔, 井誠一郎, 電子顕微鏡法の実践と応用写真集, 日本鉄鋼協会・日本金属学会, P.164, 2002.05.
3. 分担執筆, 半導体・金属材料用語辞典, 工業調査会, 1999.05.
主要原著論文
1. Hiroshi Akamine, So Okumura, Sahar Farjami, Yasukazu Murakami, Minoru Nishida, Imaging of surface spin textures on bulk crystals by scanning electron microscopy, Scientific reports, 10.1038/srep37265, 6, 2016.11, [URL], Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry..
2. Y. Soejima, S. Motomura, Masatoshi Mitsuhara, T. Inamura, Minoru Nishida, In situ scanning electron microscopy study of the thermoelastic martensitic transformation in Ti-Ni shape memory alloy, Acta Materialia, 10.1016/j.actamat.2015.10.017, 103, 352-360, 2016.01, [URL], The thermoelastic martensitic transformation from the B2 to B19′ structures in the Ti-Ni shape memory alloy was observed by in situ scanning electron microscopy in order to investigate the self-accommodation microstructure. Nucleation of the V-shaped habit plane variant cluster (2HPVC) triggers the formation of the hexangular HPVC (6HPVC) that is formed by six habit plane variants in the grain interior. The triangular morphology (3HPVC) is a derivative of 2HPVC. The autocatalytic transformation spreads from the 6HPVCs to the grain boundary and the reverse transformation proceeds like a rewind of the forward transformation. 2HPVC and 6HPVC are the most favorable morphologies for nucleation and growth, respectively, as explained by the analysis of the kinematic compatibility at junction planes..
3. B. Karbakhsh Ravari, S. Farjami, Minoru Nishida, Effects of Ni concentration and aging conditions on multistage martensitic transformation in aged Ni-rich Ti-Ni alloys, Acta Materialia, 10.1016/j.actamat.2014.01.028, 69, 17-29, 2014.05, [URL], The effects of Ni concentration and aging conditions on the multistage martensitic transformation (MMT) in aged Ni-rich Ti-Ni alloys have been investigated by differential scanning calorimetry and in situ scanning electron microscopy. The effect of Ni concentration was evaluated using Ti-50.6, 50.8 and 51.0 at.% Ni alloys. These alloys were heat treated at 1223 K for 3.6 ks and then aged at 773 K for 3.6 ks. Although the triple-stage transformation appeared in the Ti-50.6 and 51 at.% Ni alloys during cooling, the transformation sequence of the two alloys was completely different. Quadruple-stage transformation was observed in the Ti-50.8 at.% Ni alloy. The characteristic microstructure responsible for the MMT in each of the aged alloys strongly depended on the degree of Ni supersaturation and the aging temperature and time. We have proposed and experimentally verified a general rule that explains the effects of Ni concentration and aging conditions on the microstructural changes and thus the MMT sequences. This will allow the MMT in Ni-rich Ti-Ni alloys to be controlled by selecting appropriate aging conditions..
4. B. Karbakhsh Ravari, Minoru Nishida, In situ SEM studies of the transformation sequence of multistage martensitic transformations in aged Ti-50.8 at.% Ni alloys, Philosophical Magazine, 10.1080/14786435.2013.769070, 93, 18, 2279-2296, 2013.06, [URL], The transformation behaviour of the multistage martensitic transformation in aged Ti-50.8 at.% Ni alloys was investigated by differential scanning calorimetry (DSC) and in situ scanning electron microscopy (SEM). The specimens aged from 673 to 748 K for 3.6 ks under an unregulated heat treatment atmosphere exhibited the double-stage transformation during cooling. The quadruple-stage transformation was observed in the specimens aged at 773 and 798 K, and the triple-stage transformation appeared in the specimen aged at 823 K under an unregulated heat treatment atmosphere. The distribution and size of Ti 3Ni4 precipitates were heterogeneous in these specimens. The single-stage transformation in the specimen aged at 848 K was similar to that of the solution-treated specimen. In the forward quadruple-stage transformation, the R-phase transformation occurred in the intermediate region and around the grain boundary. The first martensitic transformation, which corresponded to the M1 peak in the DSC cooling curve, took place in the intermediate region of grains via the R phase. The second transformation, which corresponded to the M2 peak, occurred around the grain boundary via the R phase. The final transformation, which corresponded to the M3 peak, arose directly from the B2 parent phase at the grain centre. The transformation sequence and areas described above were quantitatively verified by comparing the SEM observations with the DSC measurements. The transformation sequence of the triple-stage transformation was also discussed..
5. Minoru Nishida, E. Okunishi, T. Nishiura, H. Kawano, T. Inamura, S. Ii, T. Hara, Self-accommodation of B19 martensite in Ti-Ni shape memory alloys-Part II. Characteristic interface structures between habit plane variants, Philosophical Magazine, 10.1080/14786435.2012.669860, 92, 17, 2234-2246, 2012.06, [URL], Four characteristic interface microstructures between habit plane variants (HPVs) in the self-accommodation morphologies of B19 martensite in Ti-Ni alloys have been investigated by scanning transmission electron microscopy (STEM). The straight interface of a B 19′ type I twin is present at interface I. The relaxation of the transformation strain at interface II is achieved by a volume reduction of the minor correspondence variants (CVs) in the relevant habit plane variants (HPVs). The relaxation of the transformation strain at interface III is mainly due to the formation of a B 19′ type I twin between the two major CVs. Subsequently, local strain around the tips of the minor CVs perpendicular to the interface is released by the formation of micro-twins with the 011B 19′ type II and/or B 19′ type I relation. The major and minor CVs in each HPV are alternately connected through fine variants with the B 19′ type I twin relation parallel to interface IV. The results are compared with macroscopic observations and the predictions of PTMC analysis..
6. Minoru Nishida, T. Nishiura, H. Kawano, T. Inamura, Self-accommodation of B19′ martensite in Ti-Ni shape memory alloys-Part I. Morphological and crystallographic studies of the variant selection rule, Philosophical Magazine, 10.1080/14786435.2012.669858, 92, 17, 2215-2233, 2012.06, [URL], The self-accommodation morphologies of B19 martensite in Ti-Ni alloys have been investigated by optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Twelve pairs of minimum units consisting of two habit plane variants (HPVs) with V-shaped morphology connected to a B 19′ type I variant accommodation twin were observed. Three types of self-accommodation morphologies, based on the V-shaped minimum unit, developed around one of the {111} B2 traces, which were triangular, rhombic and hexangular and consisted of three, four and six HPVs, respectively. In addition, the variant selection rule and the number of possible HPV combinations in each of these self-accommodation morphologies are discussed..
7. Minoru Nishida, T. Hara, M. Matsuda, S. Ii, Crystallography and morphology of various interfaces in Ti-Ni, Ti-Pd and Ni-Mn-Ga shape memory alloys, Materials Science and Engineering A, 10.1016/j.msea.2007.01.179, 481-482, 1-2 C, 18-27, 2008.05, [URL], Crystallography and morphology of various interfaces in Ti-Ni, Ti-Pd and Ni-Mn-Ga shape memory alloys are investigated by transmission electron microscopy. Neither ledge nor step structures are recognized at the irrational interface of the <0 1 1>
B19′
type II twin in Ti-Ni martensite and the <1 2 1>
B19
type II twin in Ti-Pd martensite in the two dimensional lattice image from the η
1
direction. The combination of plate variants of the 10 and the 14 M Ni-Mn-Ga martensites is subsequently discussed. There are four plate variants commonly designated as A, B, C and D, and three fundamental plate combinations can be identified in a given plate group, namely A: B (C: D) of type II, A: C (B: D) of type I and A: D (B: C) of compound twins in both the martensites. An interesting phenomenon is the migration of A: D boundary in the 10 M martensite during the observation. Finally, we present the atomic structures of {1 1 4}
B2
Σ9 boundary in the B2 parent phase of Ti-Ni. The influence of heat treatment atmosphere on the boundary structures is also discussed..
8. M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, Minoru Nishida, Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy, Materials Science and Engineering A, 10.1016/j.msea.2004.10.040, 393, 1-2, 269-274, 2005.02, [URL], The long-period stacking order (LPSO) structures in rapidly solidified Mg97Zn1Y2 alloy have been studied by conventional and high-resolution transmission electron microscopes (HRTEMs). There are four kinds of stacking sequences in the LPSO structures, i.e., 18R of ABABABCACACABCBCBC, 14H of ACBCBABABABCBC, 10H of ABACBCBCAB and 24R of ABABABABCACACACABCBCBCBC. The 18R structure is dominantly observed in the present study. The rest three are occasionally observed in places. The 10H and 24R structures are recently discovered. The lattice constants of 18R(1 1̄ 1 1̄ 2)3), 14H(2̄ 1 2̄ 1 1̄ 1 1̄ 2 1̄ 2), 10H(1 3̄ 1 1̄ 3 1̄) and 24R(1 1̄ 1 1̄ 1 1̄ 2)3 structures are estimated to be a = 0.320 nm and c = 4.678 nm, a = 0.325 nm and c = 3.694 nm, a = 0.325 nm and c = 2.603 nm, a = 0.322 nm and c = 6.181 nm for the hexagonal structure, respectively..
9. Minoru Nishida, T. Hara, Y. Morizono, A. Ikeya, H. Kijima, A. Chiba, Transmission electron microscopy of twins in martensite in Ti-Pd shape memory alloy, Acta Materialia, 10.1016/S1359-6454(97)00162-6, 45, 11, 4847-4853, 1997.01, [URL], Twins in the B19 martensite in the Ti-Pd shape memory alloy have been investigated by conventional transmission electron microscopy (CTEM) and electron diffraction. There were three twinning modes, i.e. {111} Type I, 〈121〉 Type II and {101} compound twins, in the martensite. The {111} Type I and 〈121〉 Type II twinnings which were conjugate to each other coexisted in a same martensite variant. The {111} Type I twins were dominantly observed and the 〈121〉 Type II twins were less frequently observed. The former twinning was considered to be a lattice invariant shear. The Type II twin plate appeared in two types of forms. The first one was directly connected to the Type I plate. In other words, the twin plate was inclined at crystallographically defined angle. The second one branched off from the Type I plate. Since there was no martensite variant consisting wholly of the 〈121〉 Type II twins throughout the present observations, the 〈121〉 Type II twins were considered to be a deformation twin due to the elastic interaction during the transformation. The {101} compound twinning was also considered to be a deformation twin which was introduced as result of elastic interactions during the transformation since the twin had an isolated fashion in the martensite variant consisting of {111} Type I twins..
10. Minoru Nishida, H. Ohgi, I. Itai, A. Chiba, K. Yamauchi, Electron microscopy studies of twin morphologies in B19′ martensite in the Ti-Ni shape memory alloy, Acta Metallurgica Et Materialia, 10.1016/0956-7151(94)00332-C, 43, 3, 1219-1227, 1995.01, [URL], Twins in the B19′ martensite in the Ti-Ni shape memory alloy have been investigated by conventional transmission electron microscopy (CTEM) and electron diffraction. The following five twinning modes were observed. The 〈011〉 Type II twin was dominantly observed among those and confirmed to be a lattice invariant shear since most martensite variants consisted of the 〈011〉 Type II twinning. The {111-} Type I twinning was morphologically and characteristically divided into three types, i.e. a deformation twin, a variant accommodation twin and a lattice invariant shear. (100) and (001) compound twinnings were considered to be a deformation twin. The 011 Type I twinning was inevitably reconfirmed and considered to be a lattice invariant shear rather than a deformation twin since it extended over the whole martensite plate. The formation order and mechanism of each twinning mode were qualitatively discussed in view of the elastic interaction accumulated during the martensitic transformation..
11. Minoru Nishida, K. Yamauchi, I. Itai, H. Ohgi, A. Chiba, High resolution electron microscopy studies of twin boundary structures in B19′ martensite in the Ti-Ni shape memory alloy, Acta Metallurgica et Materialia, 10.1016/0956-7151(94)00328-F, 43, 3, 1229-1234, 1995.01, [URL], The boundary structure of the 〈011〉 Type II, {111-} Type I, 011 Type I, (100) compound and (001) compound twins in the B19′ martensite in the Ti-Ni shape memory alloy was observed in the edge-on state by high resolution electron microscopy (HREM). The lattice images of the Type I and the compound twins exhibit the well-defined crystallographic features of those boundaries. Lattice image of the 〈011〉 Type II twin taken from the unique η1 axis suggests that neither ledge nor step structures are present at the irrational boundary..
12. Minoru Nishida, T. Tateyama, R. Tomoshige, K. Morita, A. Chiba, Electron microscopy studies of Ti - 47 at. % Al powder produced by plasma rotating electrode process, Scripta Metallurgica et Materiala, 10.1016/0956-716X(92)90522-G, 27, 3, 335-340, 1992.08, [URL].
13. Minoru Nishida, C. M. Wayman, T. Honma, Precipitation processes in near-equiatomic TiNi shape memory alloys, Metallurgical Transactions A, 10.1007/BF02650086, 17, 9, 1505-1515, 1986.09, [URL], Metallographic studies have been made of precipitation processes in Ti-50 pct Ni and Ti-52 pct Ni (at. pct) shape memory alloys. The eutectoid and peritectoid reactions previously reported for near-equiatomic and Ni-rich TiNi alloys were not observed for either composition. In the Ti-52Ni alloy, diffusional transformations take place, similar to those in supersaturated alloys. The precipitation sequence can be written as β
0
→ Ti
11
Ni
14
→ Ti
2
Ni
3
→ TiNi
3
. The solidus line of the TiNi phase in the Ti-52Ni alloy lies at 812 ± 22 °C. Morphological characteristics of the various precipitate phases are described in detail..
14. Minoru Nishida, T. Honma, All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging, Scripta Metallurgica, 10.1016/0036-9748(84)90125-X, 18, 11, 1293-1298, 1984.01, [URL].
15. Minoru Nishida, T. Honma, Effect of heat treatment on the all-round shape memory effect in Ti-5lat%Ni, Scripta Metallurgica, 10.1016/0036-9748(84)90126-1, 18, 11, 1299-1302, 1984.01, [URL].
主要総説, 論評, 解説, 書評, 報告書等
1. 稲邑朋也, 井誠一郎, 副島洋平, 西田 稔, 形状記憶合金の階層的組織解析, 材料の科学と工学, 2014.01.
2. 西田稔、光原昌寿、波多聰、板倉賢、中島英治、奥西栄治, β型Ti合金に生成する時効ω相の微細構造, 2010.12.
3. 西田稔, 形状記憶効果/超弾性とは? (特集 形状記憶合金研究開発の最前線), 金属, Vol. 74, pp. 116-120 (2004), 2004.03.
4. 西田稔,山内清,大方一三,, 形状記憶合金の基礎と応用, 資源と素材, Vol. 115, pp. 713-718 (1999), 1999.07.
5. 西田稔,山内清, 形状記憶合金:Ti-Ni合金の最近の応用, 固体物理;, Vol. 33, pp. 143-150 (1998), 1998.04.
6. 西田稔,, Ti基急冷凝固粉末の透過電子顕微鏡試料作製法, 電子顕微鏡, vol. 28, pp.65-67 (1993), 1993.03.
主要学会発表等
1. 西田稔, 走査電子顕微鏡による熱弾性マルテンサイト変態の組織解析, 日本顕微鏡学会, 2019.06.
2. @西田稔, 熱弾性マルテンサイト変態の組織解析, 日本金属学会第163回秋期講演大会, 2018.09.
3. M. Nishida, Y. Soejima, H. Akamine, Dynamic Visualization of Thermoelastic Martensitic Transformation with In-situ SEM Observation, 11th European Symposium on Martensitic Transformations (ESOMAT2018), 2018.08.
4. 赤嶺 大志, 猪俣 茜,奥村 聰, 板倉 賢,村上 恭和,西田 稔, マルテンサイト組織のSEM観察において現れる縞状コントラストの性質, 日本金属学会第161回秋期講演大会, 2017.09.
5. 岩本 孝信,副島 洋平,赤嶺 大志,板倉 賢,西田 稔, Ti-Pd合金のB19マルテンサイト双晶界面の高分解能電子顕微鏡観察とひずみ解析, 日本金属学会第161回秋期講演大会, 2017.09.
6. 片ノ坂 聡人, 赤嶺 大志, 西田 稔, 立方晶-正方晶相変態の組織形成に及ぼす核生成形態の影響, 日本金属学会第161回秋期講演大会, 2017.09.
7. 猪俣 茜,奥村 聰, 赤嶺 大志,板倉 賢,村上 恭和,西田 稔, 周期的組織のSEM観察において現れる縞状コントラストの成因, 日本金属学会第161回秋期講演大会, 2017.09.
8. S. Okumura, H. Akamine, S. Farjami, Y. Murakami, M. Nishida, New Magnetc Imaging Technique Using SEM with In-Column Annular Detector, The 9th Pacific Rim International Conference on Advanced Materials and Processing (PRICM9), 2016.08.
9. S. Komatsu, Y. Soejima, S. Farjami, M. Mitsuhara, M. Nishida, K. Yamauchi, Production of Ti-50.0 at.% Ni Superelastic Wire for IVR Device., The 9th Pacific Rim International Conference on Advanced Materials and Processing (PRICM9), 2016.08.
10. 西田 稔, 熱弾性マルテンサイト変態に伴う自己調整構造の形成過程, 日本金僕学会 2015年春期講演(第156回)大会, 2015.03.
11. Minoru Nishida, Yohei Soejima, Mitsuhara Masatoshi, SAHAR FARJAMI, Multiscale characterizations of martensitic transformation in Ti-Ni shape memory alloys, International Microscopy Congress, IMC 201, 2014.09.
12. 西田 稔, 形状記憶合金における熱弾性マルテンサイト変態の階層的組織解析, 日本j鉄鋼協会東海支部湯川記念講演, 2014.07.
13. Minoru Nishida, Yohei Soejima, Mitsuhara Masatoshi, SAHAR FARJAMI, Multiscale Visualization of Self-Accommodation Morphology of B19’ Martensite in Ti-Ni Shape Memory Alloy, International Conference on Martensitic Transformation 2014, 2014.07.
14. 西田 稔, Ti-Ni合金におけるマルテンサイト変態の階層的顕微解析, 日本金属学会, 2013.03.
15. Minoru Nishida, Formation Process of Self-Accommodation Morphology of B19’ Martensite in Ti-Ni Alloys , TMS2013 Annual Meeting, 2013.03.
16. Minoru Nishida, Self-Accommodation of B19' Martensite in Ti-Ni Shape Memory Alloys, 4th International Conference of Smart Materials Structures Systems (CIMTEC2012), 2012.06.
17. Minoru Nishida, Tomonari Inamura, Morphology and Crystallography of Self-Accommodated B19’ Martensite in Ti-Ni Shape Memory Alloys, NIMS Conference 2012, 2012.06.
18. 西田稔, Ti-Ni合金のマルテンサイト変態に伴う組織形成とその変形による粒界制御, 日本金属学会 2010年秋期(第147回)大会, 2011.11.
19. M. Nishida, T. Inamura, Crystallography and Morphology of Self-accommodationin B19’ Ti-Ni Martensite, European Congress and Exhibition on Advanced Materials and Processes (Keynote Lecture), 2011.09.
20. M. Nishida, H. Kawano, T. Nishiura, T. Inamura, Novel Electron Microscopy Study of Self-Accommodation in B19' Ti-Ni , MartensiteRussia-Ukraine-Japan Joint Symposium on Advanced Structural and Functional Materials Design 2010, 2010.11.
21. 西田稔、河野英人、西浦智博、稲邑朋也, 西田稔,Ti-NiB19'マルテンサイト晶癖面バリアント界面の結晶学, 日本金属学会 2010年秋期(第147回)大会, 2010.09.
22. M. Nishida, Morphology and Crystallo- graphy of Self-accommodated B19’ Martensite in Ti-Ni Shape Memory Alloys, Special Work Shop on Shape Memory Alloys, 2010.06.
23. 河合智也、光原昌寿、波多聰、板倉賢、中島英治、西田稔, βーZr合金におけるω相の3次元解析, 日本金属学会2010年(第146回)春期大会, 2010.03.
24. 河野英人、西浦智博、板倉賢、西田稔、稲邑朋也, Ti-Ni合金B19'マルテンサイトにおける晶癖面バリアントクラスターの解析(Ⅱ), 日本金属学会2010年(第146回)春期大会, 2010.03.
25. 西浦智博、河野英人、板倉賢、西田稔、稲邑朋也, Ti-Ni合金B19'マルテンサイトにおける晶癖面バリアントクラスターの解析(Ⅰ), 日本金属学会2010年(第146回)春期大会, 2010.03.
26. M. Nishida1, S. Nakamura, M. Itakura, Compositional Dependence of Transformation Sequence in Ni-Mn-Ga Alloys , 2009 Fall Meeting, Materials Research Society, 2009.12.
27. 西田稔, 形状記憶合金(SMA)研究の魅力, SMAシンポジウム2009 ~先進機能材料・先進生体材料としての形状記憶合金の新しい用途開発, 2009.11.
28. 村崎拓哉、石原優、島田祐介、松田光弘、西田稔、石川和宏、青木清, bcc/B2共晶型水素透過合金の微細構造解析, 日本金属学会 2008年春季大会, 2008.03.
29. M. Nishida, Y. Iwanaga, S. Ushimaru, T. Maeshima, K. Yamauchi, Grain refining of Ti-Mo-Sn shape memory alloys by addition of rare earth elements
, SMST2007 (Shape Memory and Superelastic Technology), 2007.12.
30. M. Nishida, Grain boundary control and characterization in Ti-Ni alloy, 61th Annual Technical Meeting of the Indian Institute of Metals, 2007.11.
31. M. Nishida, M. Matsuda, Y. Yasumoto, T. Fukuda, T. Kakeshita, Combination of 10M and 14M Martensite Plates in Ni-Mn-Ga Alloy , 2007 Fall Meeting, Materials Research Society, 2007.11.
32. 西田 稔, TiNi合金の粒界制御と粒界構造
, 日本鉄鋼協会第154回秋季講演大会 , 2007.09.
33. Minoru Nishida, Experimental consideration of multistage martensitic and R-phase transformations in aged Ni-rich Ti-Ni shape memory alloys, THERMEC’2006 (International Conference on Processing & Manufacturing of Advanced Materials), 2006.07.
34. Minoru Nishida, Toru Hara, Mitsuhiro Matsuda, Seiichiro Ii, Crystallography and morphology of various interfaces in Ti-Ni, Ti-Pd and Ni-Mn-Ga shape memory alloys
, ESOMAT2006 (European Society of Martensitic Transformation), 2006.09.
特許出願・取得
特許出願件数  7件
特許登録件数  0件
その他の優れた研究業績
2016.11, 走査電子顕微鏡による磁区構造観察に関する論文がScientific Reportsに掲載.
学会活動
所属学会名
形状記憶合金協会
アメリカ材料学会(MRS)
日本顕微鏡学会
日本鉄鋼協会
日本金属学会
学協会役員等への就任
2017.04~2019.03, 公益社団法人日本金属学会, 理事.
2016.04~2018.03, 日本金属学会, 九州支部長.
2014.04~2016.03, 日本金属学会, 九州支部副支部長.
2013.04~2016.03, 公益社団法人日本金属学会, 理事.
2013.03~2014.04, 公益社団法人日本金属学会, 副会長.
2011.05~2013.04, 日本顕微鏡学会, 九州支部副支部長.
2012.04~2013.03, 日本金属学会, 人材育成委員会委員長.
2010.04~2012.03, 日本金属学会, JABEE委員会委員長.
2009.04~2012.03, 日本鉄鋼協会, JABEE委員会.
2010.04~2012.03, 日本鉄鋼協会, 九州支部監事.
2008.04~2010.03, 日本金属学会, 理事.
2004.04~2008.03, 財団法人 本多記念会, 評議員.
2003.04~2004.03, 九州大学超高圧電顕室ナノテクノロジー総合支援プロジェクト, 運営委員.
2002.04,  International Conference on Martensitic Transformation(ICOMAT), 国際組織委員.
2006.08~2008.09, 日本学術会議, 連携会員.
2006.04, 日本金属学会 , 評議員.
2005.04~2007.03, 日本顕微鏡学会, 評議員.
2002.04~2006.03, 日本鉄鋼協会, 九州支部評議員.
1999.04~2001.03, 日本金属学会 , 分科会運営委員会(第2分科:組織部門 副委員長).
1997.04~1999.03, 日本金属学会 , 幹事.
1997.04~2001.03, 日本金属学会, 分科会委員 .
1992.04, 日本電子顕微鏡学会九州支部 , 評議員.
学会大会・会議・シンポジウム等における役割
2018.05.29~2018.05.31, 日本顕微鏡学会2018年(第74回)学術講演会, 副実行委員長.
2015.09.15~2015.09.17, 日本金属学会2015年秋期大会, 副実行委員長.
2015.03.18~2015.03.20, 日本金属学会2015年春期大会, 座長(Chairmanship).
2014.09.24~2010.09.26, 日本金属学会2014年秋期大会, 座長(Chairmanship).
2015.03.02~2015.03.03, International Workshop of Young Researcher Overseas Visits Program on Ultramicroscopy Network, 実行委員長.
2014.06.29~2014.07.04, International Conference on Martensitic Transformation 2014, 座長(Chairmanship).
2014.03.21~2014.03.23, 日本金属学会2014年春期大会本多記念講演 , 司会(Moderator).
2013.09.17~2013.09.19, 日本金属学会2013年秋期大会 , 座長(Chairmanship).
2013.03.03~2013.03.08, TMS Annual Meeting 2013, 座長(Chairmanship).
2012.05.14~2011.05.16, 日本顕微鏡学会2012年大会, 座長(Chairmanship).
2011.05.16~2011.05.18, 日本顕微鏡学会2011年大会, 座長(Chairmanship).
2011.09.04~2011.09.09, International Conference on Martensitic Transformation 2011, 実行委員長.
2010.06.06~2010.06.10, Solid-Solid Phase Transformations in Inorganic Materials (PTM-2010), 座長(Chairmanship).
2010.09.26~2010.09.28, 日本金属学会2010年秋期大会, 座長(Chairmanship).
2010.06.24~2010.06.26, 日本顕微鏡学会2010年大会, 座長(Chairmanship).
2010.03.28~2010.03.30, 日本金属学会2010年春期大会, 座長(Chairmanship).
2009.09~2009.09.25, 日本金属学会2009年秋期大会, 座長(Chairmanship).
2009.03~2009.03, 日本金属学会2009年春期大会, 座長(Chairmanship).
2008.09~2008.09, 日本金属学会2008年秋期大会, 座長(Chairmanship).
2008.06.30~2008.07.04, International Conference on Martensitic Transformsation 2008, 座長(Chairmanship).
2008.03.01~2008.03.01, 日本金属学会 2008年春期大会, 座長(Chairmanship).
2007.09, 日本金属学会 2007年秋期大会, 座長(Chairmanship).
2007.12, Shape Memory and Superelastic Technology 2007, 座長(Chairmanship).
2006.09, ESOMAT2006, 座長(Chairmanship).
2006.09, 国際顕微鏡学会, 座長(Chairmanship).
2006.03, 日本金属学会, 座長(Chairmanship).
2005.10, 日本金属学会, 座長(Chairmanship).
2016.08.01~2016.08.05, 9th Pacific Rim International Conference on Advanced Materials and Processing, Vice Chair,International Organizing Committee Members.
2015.04.01~2015.09.30, 日本金属学会2015年秋期大会, 副実行委員長.
2015.03.02~2015.03.05, International Workshop of Young ResearcherOverseas Visits Program on Ultramicroscopy Network, Chair.
2014.09.07~2014.09.12, International Microscopy Congress 2014, Program Committiee Member.
2014.06.29~2014.07.04, International Conference on Martensitic Transformation 2014, International Advisory Board Member.
2014.03.21~2014.03.23, 日本金属学会2014年春期大会, 講演大会委員長.
2013.09.17~2013.09.19, 日本金属学会2013年秋期大会, 講演大会委員長.
2014.09.07~2014.09.12, 18th International Microscopy Congress, International Scientific Programme Committee (ISPC)..
2011.09.04~2011.09.09, International Conference on Martensitic Transformation 2011, Co-chairs.
2011.05.16~2011.05.18, 日本顕微鏡学会第67回学術講演会, 実行委員.
2010.05~2009.05, Shape Memory and Superelastic Technology 2010, Organizing Committee.
2009.09.27~2009.10.02, The Twelfth Frontiers of Electron Microscopy in Materials Science (FEMMS2009), Steering Committee: General Affairs.
2007.12.01~2007.12.05, Shape Memory and Superelastic Technology 2007, Vice Chairmen.
2005.06.01~2005.06.06, International Conference on Martensitic Transformation 2005, Organizing Committee.
学会誌・雑誌・著書の編集への参加状況
2017.01, Shape memory and Superelasticity, 国際, 編集委員.
2011.09~2012.09, Journal of Alloys and Compounds, 国際, 編集委員長.
2004.04~2010.12, Materials Science and Engineering誌, 国際, 編集委員.
2002.04~2010.03, 日本金属学会会誌・欧文誌, 国内, 編集委員.
1997.04~1999.03, 日本金属学会会報, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2020年度      
2019年度      
2018年度
2017年度 11  13 
2016年度 13  14 
2015年度 10  10 
2014年度 12  13 
2013年度 16  17 
2012年度 17  19 
2011年度 14  18 
2010年度 11  11 
2009年度 15  17 
2008年度 14  16 
2007年度 12  17 
2006年度 14  4  15 
2005年度 11  7  13 
その他の研究活動
海外渡航状況, 海外での教育研究歴
University of Illinois Urbana Champaign, University of Michigan, UnitedStatesofAmerica, 2019.08~2019.08.
Shape Memory and Superelasticity Technology 2019, Germany, 2019.05~2019.05.
Oxford University, UnitedKingdom, 2018.09~2018.09.
European Society of Martensitic Transformation-ESOMAT2018, France, 2018.08~2018.08.
International Conference on Creep And Fracture Engineering Materials And Structure, France, 2015.05~2015.06.
International Microscopy Congress(IMC2014), University of Viena, CzechRepublic, Austria, 2014.09~2014.09.
University of Antwerp, Belgium, 2014.11~2014.11.
Arizona State University, UnitedStatesofAmerica, 2014.12~2014.12.
International Conference on Martensitic Transformation, Spain, 2014.06~2014.07.
Chulalongkon University, Thailand, 2013.01~2013.01.
Indian Institute of Technology, Madras, India, 2013.02~2013.02.
TMS Annual Meeting 2013, Virginia Tech, Arizona State University, UnitedStatesofAmerica, 2013.03~2013.03.
University of Illinois, UnitedStatesofAmerica, 2013.09~2013.10.
4th International Conference of Smart Materials Structures Systems (CIMTEC2012), Italy, 2012.06~2012.06.
European Society of Martensitic Transformation-ESOMAT2012, Russia, 2012.09~2012.09.
Solid-Solid Phase Transformations in Inorganic Materials (PTM-2010), France, 2010.06~2010.06.
Special Work Shop on Shape Memory Alloys; Koch University, Turkey, 2010.06~2010.06.
European Congress on Advanced Materials and Processing (EUROMAT-2011), France, 2010.06~2010.06.
Materials Research Society, UnitedStatesofAmerica, 2009.11~2009.11.
University of Arkansas, Little Rock, Los Alamos National Laboratory, UnitedStatesofAmerica, 2008.06~2008.07.
Dresden University of Technology, University of Antwerp, Japan, 2008.08~2008.09.
Recrystallization and Grain Growth 2007, Korea, 2007.06~2007.06.
Materials Research Society, UnitedStatesofAmerica, 2007.11~2007.11.
The Indian Institute of Metals, India, 2007.11~2007.11.
Arizona State University, University of Illinois, UnitedStatesofAmerica, 2006.06~2006.06.
Ruhr-Universität Bochum, Germany, 2006.09~2006.09.
Indian Institute of Science, India, 2001.06~2001.06.
University of Illinois, UnitedStatesofAmerica, 1983.12~1985.10.
外国人研究者等の受入れ状況
2010.03~2010.03, 2週間以上1ヶ月未満, アントワープ大学, Morocco, 日本学術振興会.
2010.03~2010.03, 2週間未満, アントワープ大学, Belgium, 日本学術振興会.
2009.09~2009.10, 2週間未満, アントワープ大学, Belgium, 日本学術振興会.
受賞
日本鉄鋼協会俵論文賞, 一般社団法人日本鉄鋼協会, 2019.03.
日本金属学会功労賞, 公益社団法人 日本金属学会, 2018.09.
Scripta Materialia Excellent Reviewer, The Bord of Governors of Acta Materiallia, 2017.03.
Recognized Reviewer Status of Journal of Alloys and Compounds, Elsevier, 2016.10.
日本金属学会金属組織写真優秀賞, 日本金属学会, 2016.03.
Scripta Materialia Excellent Reviewer, The Bord of Governors of Acta Materiallia, 2016.03.
Scripta Materialia Excellent Reviewer, The Bord of Governors of Acta Materiallia, 2015.03.
Scripta Materialia Excellent Reviewer, The Bord of Governors of Acta Materiallia, 2014.03.
Scripta Materialia Excellent Reviewer, The Bord of Governors of Acta Materiallia, 2013.03.
谷川・ハリス賞, 公益社団法人 日本金属学会, 2013.03.
日本金属学会金属組織最優秀賞, 日本金属学会, 2012.03.
International Metallographic Contest 2011, ASM, 2011.08.
International Metallographic Contest 2011, ASM, 2011.08.
日本金属学会金属組織最優秀賞, 日本金属学会, 2011.03.
日本金属学会金属組織優秀賞, 日本金属学会, 2011.03.
日本金属学会金属組織優秀賞, 日本金属学会, 2010.03.
日本金属学会金属組織写真科佳作賞, 日本金属学会, 2007.03.
日本金属学会 組織部門 功績賞, 日本金属学会, 2000.03.
日本金属学会金属組織写真奨励賞, 日本金属学会, 1993.03.
資源素材学会論文賞, 1993.03.
本多記念会研究奨励賞, 1987.05.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2019年度~2021年度, 基盤研究(A), 代表, 階層的顕微解析による熱弾性マルテンサイト変態の多様性の理解.
2018年度~2020年度, 挑戦的研究(萌芽), 代表, 高静磁場MRIに適用可能な低磁性生体用形状記憶・超弾性合金の開発.
2015年度~2016年度, 挑戦的萌芽研究, 代表, 走査電子顕微鏡による高分解能・広領域磁気イメージング法の開発と展開.
2014年度~2016年度, 基盤研究(A), 代表, 熱弾性マルテンサイト組織の形成ダイナミクスと3次元構造の超顕微解析.
2013年度~2014年度, 新学術領域研究, 代表, バルクナノ超弾性合金におけるマルテンサイト変態の結晶学と機能発現の起源.
2011年度~2012年度, 新学術領域研究, 代表, 粒界制御バルクナノTiNi合金の創製と粒界構造解析.
2011年度~2013年度, 基盤研究(B), 代表, 次世代電子顕微鏡を用いたオメガ変態の実次元マルチスケール解析.
2009年度~2010年度, 挑戦的萌芽研究, 代表, 高機能薄膜デバイス開発のための形状記憶アクティブ歪制御基板の創製.
2008年度~2010年度, 基盤研究(B), 代表, Ti-Ni形状記憶合金における未解明な現象の解析と新機能の創出.
2005年度~2007年度, 基盤研究(B), 代表, 「特化した機能を持つ形状記憶・超弾性合金の開発」.
2004年度~2005年度, 萌芽研究, 代表, 「低温処理で生成可能な超伝導A15型化合物の探索」.
日本学術振興会への採択状況(科学研究費補助金以外)
2014年度~2014年度, 「橋渡し研究加速ネットワークプログラム」 研究開発施設共用等促進費補助金 , 代表, β単相超弾性材料創製及びそれを用いた次世代IVRデバイスの臨床応用.
2012年度~2014年度, 頭脳循環を加速する若手研究者戦略的海外派遣プログラム, 代表, 先進材料の実次元マルチスケール解析と機能設計のための超顕微国際ネットワークの構築.
2009年度~2010年度, 二国間交流, 代表, 電子顕微鏡拠点施設の協力によるナノ構造解析技術の開発と先端材料研究への展開.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」