九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
田原 健二(たはら けんじ) データ更新日:2024.04.05

教授 /  工学研究院 機械工学部門 制御システム


主な研究テーマ
高速度カメラを用いた低速度マニピュレータの軌道計画
キーワード:高速度カメラ,低速度マニピュレータ
2022.04.
ヒンジ機構およびトルク機構に関する研究
キーワード:ヒンジ, トルク
2021.12~2023.12.
筋骨格ポテンシャル法とソフトアクチュエータを融合した超多筋骨格ソフトロボティクス
キーワード:筋骨格システム,ソフトロボティクス
2021.04~2024.03.
無音駆動する液冷人工筋ロボットハンド
キーワード:ソフトロボティクス,高分子,制御工学
2020.04~2023.03.
確率モデルベース制御とセンサフィードバックの融合によるソフトロボティクス制御工学
キーワード:ソフトロボティクス,高分子,制御工学
2020.04~2024.03.
力制御技術の成熟・体系化および柔軟に人との協調作業を実現するロボティクス技術に関する研究
キーワード:力制御, 柔軟性
2019.02~2021.03.
感覚運動統合における感覚情報の遅れやノイズにロバストな運動戦略
キーワード:感覚運動統合,遅れ,ノイズ
2016.04~2021.03.
高分子人工筋肉アクチュエータによる柔らかな運動支援装具の研究開発
キーワード:高分子人工筋肉アクチュエータ
2015.10~2017.03.
捻転柔軟半球足による複合モビリティ
キーワード:複合モビリティ
2014.04.
感覚フィードバックと体勢感覚情報の融合による巧みな物体マニピュレーション手法
キーワード:仮想フレーム
2013.04.
フィードフォワードとフィードバックの組み合わせによる筋骨格システムの制御
キーワード:筋骨格システム
2012.03.
可変剛性を実現する逆可動性の高いマニピュレータ
キーワード:可変剛性
2009.04.
筋骨格モデルを用いた自然で滑らかな運動を実現する制御構造の構築
キーワード:筋骨格系
2007.04.
人を抱き上げ可能な人型介護ロボットシステムの開発
キーワード:介護ロボット
2003.04~2007.03.
多指ハンドによる動的物体把持・操作
キーワード:動的物体把持・操作
2007.04.
従事しているプロジェクト研究
確率モデルベース制御とセンサフィードバックの融合によるソフトロボティクス制御工学
2020.04~2024.03, 代表者:田原健二, 九州大学, JSPS.
SIP第2期 フィジカル空間デジタルデータ処理基盤 サブテーマIII:Society 5.0実現のための社会実装技術/CPS構築のためのセンサリッチ柔軟エンドエフェクタシステム開発と実用化
2020.04~2023.03, 代表者:川村貞夫, 立命館大学, NEDO.
無音駆動する液冷人工筋ロボットハンド
2020.04~2023.03, 代表者:田原健二, 九州大学, JSPS.
自己センシング高分子人工筋肉の開発と物理原理に基づく制御指向モデリング
2017.04~2021.03, 代表者:高木賢太郎, 国立大学法人名古屋大学.
感覚運動統合における感覚情報の遅れやノイズにロバストな運動戦略
2016.04~2019.03, 代表者:田原 健二, 九州大学, 九州大学.
次世代ロボット中核技術開発「高分子人工筋肉アクチュエータによる柔らかな運動支援装具の研究開発」
2015.09~2017.03, 代表者:田原健二, 九州大学, NEDO
本研究開発では,ヒト手指を能動的に補助する装具に高分子人工筋肉アクチュエータを応用し,人間と密接に接触・相互作用可能で,かつ極めて安価な,ロボットアクチュエーション技術の実現を目指す..
感覚フィードバックと体勢感覚情報の融合による巧みな物体マニピュレーション手法
2013.04~2016.03, 代表者:田原健二, 九州大学, 九州大学
多指ハンドによる物体マニピュレーションにおいて,外界センシング情報を用いた感覚フィードバック制御手法と,事前情報や体勢感覚情報を基にしたフィードフォワード制御手法の垣根を取り払い,これらが渾然一体となった新たな制御パラダイムを確立する.これに基づき,未知の物体を巧みに把持・操作することが可能な制御器設計のための基板理論を構築する..
ソフトメカニクス領域Ⅰ
2010.04, 代表者:山本元司, 九州大学, 九州大学
人の身近で稼働する柔らかい知能機械全般についての研究・開発を目的とした,新しいソフトメカニクス領域の開拓.
ロボットハンドにおける動的柔軟指先のモデル化と動的物体把持の実現
2008.04~2011.03, 代表者:田原健二, 九州大学, 九州大学
柔軟な指先を持つ多指ハンドロボットによる,巧みな物体操作の実現.
SSPヒューマンセンタードロボティクスプロジェクト
2007.04~2011.03, 代表者:山本元司,長谷川勉, 九州大学, 九州大学
九州大学で新たに設けられたテニュア・トラック制度による若手研究者養成プロジェクトにおける,人間を中心とした新しいロボティクス分野の新規開拓.
人を抱き上げ可能な人型介護ロボットシステムの開発
2003.04~2007.03, 代表者:細江繁幸, 独立行政法人理化学研究所, 独立行政法人理化学研究所
要介護者をベッドや車いすへ移乗させることを目的とした,人を2つの腕で抱きかかえ上げるロボットの開発.
研究業績
主要著書
1. Kenji Tahara, Akihiro Kawamura, Chapter 9: A Grasping and Manipulation Scheme That is Robust gainst Time Delays of Sensing Information: An Application of a Controller Based on Finger-Thumb Opposability Human-Inspired Dexterity in Robotic Manipulation, 1st Ed., Academic Press, 2018.07.
2. 有本, 卓, 田原, 健二, ロボットと解析力学, コロナ社, 総ページ数:viii, 193p, 2018.01.
3. 田原 健二, ロボット制御工学ハンドブック(松野文俊,大須賀公一,松原仁,野田五十樹,稲見昌彦 編著) 2.4.2節 ロボットハンドの力学モデル, 近代科学社, 2017.12.
4. K. Tahara and Z.W. Luo, "On dynamic control mechanisms of redundant human musculo-skeletal system,", Springer-Verlag, 2011.10.
5. 金岡克弥(編著), 菊植 亮, 木野 仁, 杉原知道, 田原健二, 橋口宏衛, 吉田晴行, あのスーパーロボットはどう動く–スパロボで学ぶロボット工学–, 日刊工業新聞社, 2010.03.
主要原著論文
1. Takuto Fujiki, Kenji Tahara, Series admittance–impedance controller for more robust and stable extension of force control, ROBOMECH Journal, 10.1186/s40648-022-00237-5, 9, 23, 2022.12.
2. 伊藤壮平, 田原健二, 多指ロボットハンドの転がり接触を考慮したセンサレス把持剛性制御, 日本ロボット学会誌, 10.7210/jrsj.40.928, 40, 10, 928-931, 2022.12.
3. 藤木 拓人, 田原 健二, 直列アドミッタンス・インピーダンス制御の実験的検証, 日本ロボット学会誌, 10.7210/jrsj.40.355, 40, 4, 355-358, 2021.07.
4. Ken Masuya,Kenji Tahara, Novel Twisted and Coiled Polymer Fiber Actuator Fabricated From Polymer-Coated Optical Fiber, IEEE Robotics and Automation Letters, https://doi.org/10.1109/LRA.2021.3070247, 6, 3, 2021.06, This study proposes a novel twisted and coiled polymer fiber (TCPF) actuator fabricated from a polymer-coated optical fiber. The TCPF actuator is a soft actuator that is driven by heating; the TCPF actuator in combination with a cooling system has been widely studied for applications in robotics. Sensing is a major issue in such units; in particular, temperature sensing is important for the safe usage of the TCPF. To achieve this, the electrical properties of the heating wire are typically utilized. However, this method is affected by the input voltage noise because the circuit used for actuation is the same as that used for sensing. To separate these circuits, this study developed a temperature-sensing method for the TCPF based on an optical fiber. For propagating only the heat of the polymer to the optical fiber, we embedded the optical fiber in the TCPF. This study experimentally demonstrated that the TCPF actuator fabricated using the polymer-coated optical fiber can be driven by heating. Furthermore, using the developed sensing method, we achieved temperature and force control under isometric conditions..
5. Takuto Fujiki, Kenji Tahara, Numerical Simulations of A Novel Force Controller Serially Combining The Admittance and Impedance Controllers, Proc. IEEE Int. Conf. Robot. Automat., 2021.06.
6. Seung hyun Choi, Kenji Tahara, Dexterous object manipulation by a multi-fingered robotic hand with visual-tactile fingertip sensors, ROBOMECH Journal, 10.1186/s40648-020-00162-5, 7, 1, 2020.03, [URL], © 2020, The Author(s). In this paper, a novel visual-tactile sensor is proposed; additionally, an object manipulation method for a multi-fingered robotic hand grasping an object is proposed by detecting a contact position using the visual-tactile sensor. The visual-tactile sensor is composed of a hemispheric fingertip made of soft silicone with a hollow interior and a general USB camera located inside the fingertip to detect the displacement of the many point markers embedded in the silicone. The deformation of each point marker due to a contact force is measured, and a contact position is estimated reliably through a novel method of creating virtual points to determine the point clouds. The aim is to demonstrate both the estimation performance of the new visual-tactile sensor and its usefulness in a grasping and manipulation task. By using the contact position obtained from the proposed sensor and the position of each fingertip obtained from kinematics, the position and orientation of a grasped object are estimated and controlled. The effectiveness of the method is illustrated through numerical simulation and its practical use is demonstrated through grasping and manipulating experiments..
7. Kenji Tahara, Ryo Hayashi, Ken Masuya, Kentaro Takagi, Toshihira Irisawa, Takuma Yamauchi, Eitaro Tanaka, Rotational Angle Control of a Twisted Polymeric Fiber Actuator by an Estimated Temperature Feedback, IEEE Robotics and Automation Letters, 10.1109/lra.2019.2901982, 4, 3, 2447-2454, 2019.07, [URL], © 2016 IEEE. A twisted polymeric fiber (TPF) actuator often referred to as a fishing line/sewing thread artificial muscle, is one of the soft actuators which is made by twisting and heating a nylon fishing line. There are mainly two types of the TPF actuator, one is to make a contraction motion, which is sometimes called a twisted and coiled polymeric fiber actuator, and the other is to make a rotational motion, called simply a TPF actuator. This letter focuses on the latter one and proposes an estimated temperature feedback control method to regulate a torsional angle of the TPF actuator. The TPF actuator is very lightweight and low cost, but the advantage would be lost if some external sensors, such as a thermal sensor or encoder is used. In order to control the torsional angle without the use of the external sensors, a temperature of the actuator is estimated by measuring the change in the Ohm resistance of a heater wrapping around the actuator. By feedbacking the estimated temperature, the torsional angle can be regulated indirectly. First, the two types of models are proposed. One is to derive a desired temperature of the actuator from the desired angle. The other is to estimate the actuator's temperature from a change of the resistance of the actuator's heater. Next, the temperature feedback control law is composed using these two models. Finally, experiments of the torsional angle regulation are conducted using a prototype of the actuation module, which consists of antagonistically embedded two TPF actuators to demonstrate the usefulness of the proposed controller..
8. Ryo Hayashi, Ken Masuya, Kentaro Takagi, Toshihira Irisawa, Rui Fujino, Takuma Yamauchi, Eitaro Tanaka, Kenji Tahara, Rotational Angle Trajectory Tracking of a Twisted Polymeric Fiber Actuator by the Combination of a Model-Based Feed-Forward and Estimated Temperature Feedback, IEEE Robotics and Automation Letters, 10.1109/lra.2019.2908484, 4, 3, 2561-2567, 2019.07, [URL], © 2016 IEEE. In this letter, an angular trajectory tracking controller for a twisted polymeric fiber (TPF) actuator by the combination of a model-based feed-forward and estimated temperature feedback is proposed. TPF actuator is one of the soft actuators that can produce a rotational motion, which is made by twisting a nylon yarn and thermally treating it. Adding a feed-forward controller with a feedback controller makes it possible to reduce a phase lag and realizes a higher frequency response compared with using only the feedback controller when performing a time-dependent trajectory tracking. First, temperature-angle, resistance-temperature, and voltage-temperature models are composed, respectively, and then combined in order to design a feedforward controller. Next, parameter estimation is performed through experiments using the prototype of a rotational actuation module. Finally, trajectory-tracking experiments are conducted using a prototype to demonstrate that the proposed method can improve the tracking performance by reducing the phase lag..
9. 田原健二, 時間遅れやノイズにロバストな運動制御戦略 -開かれた環境での運動知能-, 日本ロボット学会誌, 10.7210/jrsj.36.616, 36, 9, 616‐619(J‐STAGE), 2018.11, [URL].
10. Ken Masuya, Shu Ono, Kentaro Takagi, Kenji Tahara, Feedforward control of twisted and coiled polymer actuator based on a macroscopic nonlinear model focusing on energy, IEEE Robotics and Automation Letters, 10.1109/LRA.2018.2801884, 3, 3, 1824-1831, 2018.07, © 2016 IEEE. This letter proposes a feedforward (FF) controller for the twisted and coiled polymer actuator (TCPA), the so-called fishing line/sewing thread artificial muscle, based on its macroscopic nonlinear model. TCPA is an artificial muscle, and it contracts up to 50% in response to heating. Although several methods considering Joule heating as the input have been proposed to control the TCPA displacement, the FF controller based on the linear model shows the nonnegligible offset error. Therefore, the FF controller should be designed based on a nonlinear model, e.g., the model constructed by the authors. However, computing the inverse of the nonlinear model for the FF controller is difficult. Even if the inverse can be computed under static conditions, the problem of how to compensate the dynamics still remains. For this problem, we compensate the dynamics based on the idea of the Hammerstein model, namely we divide the inverse dynamics into the nonlinear transformation part and linear dynamics part. The former part consists of a converter from the displacement to temperature and a ratio adjuster for the squared voltage. Meanwhile, the latter is represented by the linear model of TCPA temperature. Through experiments, it is verified that the proposed FF controller can reduce the offset error of the displacement compared with the linear controller..
11. 小澤隆太, 田原健二, 多指ロボットハンドの制御法, 日本ロボット学会誌, 10.7210/jrsj.36.306, 36, 5, 306-315, 2018.06, [URL].
12. Y. Matsutani, K. Tahara, H. Kino, H. Ochi, Complementary compound set-point control by combining muscular internal force feedforward control and sensory feedback control including a time delay, Advanced Robotics, 10.1080/01691864.2018.1453375, 32, 8, 411-425, 2018.04, [URL], This paper proposes a new set-point control method for a musculoskeletal arm by combining muscular internal force feedforward control with feedback control including a large time delay. The proposed method accomplishes robust and rapid positioning with a relatively small muscular force. In the positioning by the muscular internal force feedforward controller, a large muscular force is required to achieve good performance. On the other hand, in the positioning by the feedback controller including the large time delay, the system can easily fall into an unstable state. A simple linear combination of these two controllers makes it possible to improve the control performance and to overcome the drawbacks of each controller in a complementary manner. First, a two-link six-muscle arm model is considered as a musculoskeletal system in this study. Second, the new set-point control method, which consists of the feedforward control signal and the feedback control signal including the time delay, is designed. Third, the stability of the proposed method is investigated using the Lyapunov–Razumikhin method. Finally, the results of numerical simulations and experiments are presented to demonstrate the advantages of the proposed method..
13. Y. Matsutani, K. Tahara, H. Kino, H. Ochi, Complementary compound set-point control by combining muscular internal force feedforward control and sensory feedback control including a time delay, Advanced Robotics, 10.1080/01691864.2018.1453375, 32, 8, 411-425, 2018.04, This paper proposes a new set-point control method for a musculoskeletal arm by combining muscular internal force feedforward control with feedback control including a large time delay. The proposed method accomplishes robust and rapid positioning with a relatively small muscular force. In the positioning by the muscular internal force feedforward controller, a large muscular force is required to achieve good performance. On the other hand, in the positioning by the feedback controller including the large time delay, the system can easily fall into an unstable state. A simple linear combination of these two controllers makes it possible to improve the control performance and to overcome the drawbacks of each controller in a complementary manner. First, a two-link six-muscle arm model is considered as a musculoskeletal system in this study. Second, the new set-point control method, which consists of the feedforward control signal and the feedback control signal including the time delay, is designed. Third, the stability of the proposed method is investigated using the Lyapunov–Razumikhin method. Finally, the results of numerical simulations and experiments are presented to demonstrate the advantages of the proposed method..
14. Miao Li, Kenji Tahara, Aude Billard, Learning task manifolds for constrained object manipulation, Autonomous Robots, 10.1007/s10514-017-9643-z, 42, 1, 159-174, 2018.01, [URL], Reliable physical interaction is essential for many important challenges in robotic manipulation. In this paper, we consider Constrained Object Manipulations tasks (COM), i.e. tasks for which constraints are imposed on the grasped object rather than on the robot’s configuration. To enable robust physical interaction with the environment, this paper presents a manifold learning approach to encode the COM task as a vector field. This representation enables an intuitive task-consistent adaptation based on an object-level impedance controller. Simulations and experimental evaluations demonstrate the effectiveness of our approach for several typical COM tasks, including dexterous manipulation and contour following..
15. Ken Masuya, Shu Ono, Kentaro Takagi, Kenji Tahara, Modeling framework for macroscopic dynamics of twisted and coiled polymer actuator driven by Joule heating focusing on energy and convective heat transfer, SENSORS AND ACTUATORS A-PHYSICAL, 10.1016/j.sna.2017.10.016, 267, 443-454, 2017.11, [URL], In this paper, a nonlinear dynamics model of the twisted and coiled polymer actuator (TCPA) driven by Joule heating is proposed. TCPA is an actuator based on the phenomenon that the twisted and coiled polymer contracts by heating. TCPA has received considerable research attention after the discovery of this phenomenon. Although several conventional models were proposed to explain TCPA behavior, they do not address several characteristics of a real TCPA, namely, the delay of the displacement to the temperature, temperature behavior to the input (Joule heating), and effect of the convective heat transfer on the relationship between the displacement and temperature. The macroscopic modeling framework presented herein explains these properties. The main ideas of the proposed model are (1) the energy relating to TCPA, and (2) the temperature and velocity dependence of the convective heat transfer coefficient. Experiments were conducted for three kinds of TCPA. It was verified that the proposed model is more viable than a conventional model. In particular, the proposed model reduced the prediction errors of the displacement by more than 50% compared with the conventional model. (C) 2017 Elsevier B.V. All rights reserved..
16. Ryuta Ozawa, Kenji Tahara, Grasp and dexterous manipulation of multi-fingered robotic hands: a review from a control view point, ADVANCED ROBOTICS, 10.1080/01691864.2017.1365011, 31, 19-20, 1030-1050, 2017.04, [URL], Manipulation is one of the most important fields in robotics. Nevertheless, even given the long history of manipulation research, technologies for multi-fingered robotic hands are still in development. This paper investigates past research studies on control systems of multi-fingered robotic hands for grasping and manipulation..
17. 松谷祐希, 田原健二, 木野仁, 越智裕章, 山本元司, むだ時間を含む感覚フィードバックと筋内力フィードフォワードの相補的組み合わせによる筋骨格アームの位置制御, 日本ロボット学会誌, 10.7210/jrsj.34.143, 34, 2, 143‐152(J‐STAGE)-152, 2016.03, In this paper, a new set-point control method for a musculoskeletal system by combining a feedback control including a large time-delay with a muscular internal force feedforward control is proposed to accomplish a robust and rapid positioning with relatively low muscular contraction forces. It is known that feedback control under the existence of a large time-delay owns a drawback that there is a serious trade-off between a control performance and its stability. On the other hand, the muscular internal force feedforward control, which we have already proposed, also owns a drawback that it requires a large muscular contraction forces to make a good performance in a wide range. A simple linear combination of these two controllers makes it possible to improve the control performance and to complement each drawbacks each other. Firstly a two-link six-muscle arm model is given as a specific musculoskeletal system treated in this study. Secondly the new control law, which is composed of the feedback control signal including the time-delay and the internal force feedforward control signal, is constructed by only using a kinematic information of the musculoskeletal arm model. Next, a stability of the proposed method is discussed using Lyapunov-Razumikhin method. After that, results of several numerical simulations are shown to demonstrate several advantages of the proposed method..
18. Akihiro Kawamura, Kenji Tahara, Ryo Kurazume, Tsutomu Hasegawa, Dynamic grasping of an arbitrary polyhedral object, ROBOTICA, 10.1017/S0263574712000525, 31, 4, 511-523, 2013.07, This paper proposes a novel dynamic stable grasping method of an arbitrary polyhedral object for a hand-arm system with hemispherical fingertips. This method makes it possible to satisfy the force/torque equilibrium condition for the immobilization of the object without knowledge of the object. Two control signals are proposed which generate grasping forces normal and tangential to an object surface in a final state. The dynamics of the overall system is modeled and analyzed theoretically. We demonstrate the stable grasping of an arbitrary polyhedral object using the proposed controller through numerical simulations and experiments using a newly developed mechanical hand-arm system..
19. K. Tahara, S. Arimoto, R. Ozawa and Z.W. Luo, Bio-mimetic pinching movements of musculo-skeletal dual finger model, Advanced Robotics, 25, 1-2, 175-204, 2011.01.
20. K. Tahara and H. Kino, Reaching movements of a redundant musculo-skeletal arm: Acquisition of an adequate internal force by iterative learning and its evaluation through a dynamic damping ellipsoid, Advanced Robotics, 24, 5-6, 783-818, 2010.04.
21. K. Tahara, S. Arimoto, M. Sekimoto and Z.W. Luo, On control of reaching movements for musculo-skeletal redundant arm model, Applied Bionics and Biomechanics, 6, 1, 57-72, 2009.03.
22. H. Kino, T. Yahiro, S. Taniguchi and K. Tahara, Sensorless position control using feedforward internal force for completely restrained parallel-wiredriven systems, IEEE Transactions on Robotics, 25, 2, 467-474, 2009.02.
23. 田原健二, 山口光治, 有本卓, 最小自由度をもつ柔軟2本指ロボットによる安定把持および姿勢制御のためのセンソリーフィードバック, 日本ロボット学会誌, 10.7210/jrsj.21.763, 21, 7, 763-769, 2003.10, This paper firstly derives and analyzes non-linear dynamics of pinch motions generated by a pair of robot fingers (1 D.O.F. and 2 D.O.F.) with soft tips and finds a feedback control signal for stable grasping and posture control of a rigid object based on passivity analysis. It is shown that measurements of rotation angle of the object by means of optical devices play a crucial role in construction of such feedback signals. Secondly, results of computer simulation by using the derived non-linear differencial equations with geometric constraints and results of experiments by using such robot fingers are presented. Then, usefulness of this control method is discussed from the practical viewpoint..
24. 田原健二, BAE J H, 有本卓, 2本指ロボットを用いたセンソリーフィードバックによる動的安定把持および姿勢制御, システム制御情報学会論文誌, 10.5687/iscie.16.253, 16, 6, 253-259, 2003.06, This paper firstly shows Lagrange's equation of a pair of robot fingers with hemishperical tips pinching a rigid object under four geometric constraints. In derivation of the equation, it is assumed that the rigid object has two parallel flat surfaces, motion of the overall system is confined to a horizontal plane and the effect of gravity is ignored. It is then shown that there exists a sensory feedback signal not only for secure pinching with the desired contact force but also for control the object orientation at a specified rotational angle. It is also shown that the method of computer simulation based on the non-linear differential equation with four geometric constraints is discussed together with presenting some computational results..
主要総説, 論評, 解説, 書評, 報告書等
1. 田原健二, 回転型ナイロン糸人工筋肉アクチュエータの温度推定によるセンサレス角度制御手法について, 月刊機能材料, 2021.09.
2. 新山 龍馬, 田原 健二, 「ソフトロボティクス」特集について, 10.7210/jrsj.37.2, 2019.01, [URL].
3. 田原 健二, 時間遅れやノイズにロバストな運動制御戦略:—開かれた環境での運動知能—, 日本ロボット学会誌, 10.7210/jrsj.36.616, 2018.12, [URL].
4. 小澤 隆太, 田原 健二, 多指ロボットハンドの制御法, 日本ロボット学会誌, 10.7210/jrsj.36.306, 2018.07, [URL].
5. 原田 研介, 田原 健二, 「マニピュレーション・レビュー」特集について, 日本ロボット学会誌, 10.7210/jrsj.36.305, Vol.36, No.5, p.305, 2018.06, [URL].
6. 田原 健二, 無段変速機構を有するマニピュレータ, 日本ロボット学会誌, 2013.08.
7. 大西正輝,小田島正,田原健二,平野慎也,向井利春,羅 志偉,細江繁幸, 人体を外側から扱うロボットの設計:人と接するロボットRI-MAN の研究開発を通して得られた知
, 日本ロボット学会誌, 2008.03.
8. 有本 卓,田原健二,吉田守夫, 手指の筋骨格と巧みさの源泉, 日本ロボット学会誌, 2010.06.
9. 田原 健二, 手指の巧みさとロボットハンド, 2010.11.
10. 田原 健二, 動的安定把持に基づくマニピュレーション, 日本ロボット学会誌, 2013.06.
主要学会発表等
1. 有田 輝, 中村 隼, 田原 健二, 近接覚に基づく粘弾性を用いた接触遷移制御の基礎検討, ROBOMECH2023, 2023.06.
2. 中村 隼, 有田 輝, 田原 健二, 近接覚センサを用いた力制御におけるセンサ出力のモデル化による実験データに基づく解析の基礎検討, ROBOMECH2023, 2023.06.
3. 森 隆典, 藤木 拓人, 有田 輝, 田原 健二, 直列アドミッタンス・インピーダンス制御による衝突力軽減, ROBOMECH2023, 2023.06.
4. 山本 修平, 有田 輝, 田原 健二, 内在筋と外在筋を模した油冷ナイロン糸人工筋肉ロボット指, ROBOMECH2023, 2023.06.
5. 本司 澄空, 有田 輝, 田原 健二, 関節粘弾性3要素を用いたソフトフィンガの動力学モデル, 第28回ロボティクスシンポジア, 2023.03.
6. 壷井 翔貴, 有田 輝, 木野 仁, 田原 健二, 筋骨格冗長アームの可変手先粘弾性制御, 第28回ロボティクスシンポジア, 2023.03.
7. 中村 隼, 有田 輝, 田原 健二, 光学式近接覚センサとアドミッタンス制御を用いた衝撃力低減手法の検討, SICE SI2022, 2022.12.
8. 本司 澄空, 有田 輝, 田原 健二, 腱駆動ソフトフィンガの集中定数系モデル化とパラメータ推定手法, SICE SI2022, 2022.12.
9. 壷井 翔貴, 木野 仁, 有田 輝, 田原 健二,, 筋骨格ロボットアームを用いた可変手先粘弾性楕円体による外力適応性の向上, RSJ2022, 2022.09.
10. 吉田 優太郎, 林 亮, 舛屋 賢, 高木 賢太郎, 有田 輝, 田原 健二,, 回転型釣糸人工筋肉アクチュエータの拮抗型合トルク制御, RSJ2022, 2022.09.
11. 雉本 幹哉, 鈴木 陽介, 田原 健二, ナイロン糸人工筋肉で駆動する高分子ハンド, ROBOMECH2022, 2022.06.
12. 赤松 周, 田原 健二, DDモータと高分子材料の複合による粘弾性駆動モジュール, ROBOMECH2022, 2022.06.
13. Ha Thang Long Doan, Kenji Tahara, Fingertip contact detection for a multi-fingered under-actuated robotic hand using density-based clustering method, ROBOMECH2022, 2022.06.
14. 福田 圭太郎, 田原 健二, 脚車輪型移動ロボットの最適化を用いた車輪移動・歩行複合, ROBOMECH2022, 2022.06.
15. 本司 澄空, 田原 健二, 腱駆動ソフトグリッパのセンサレス指先接触力推定, ROBOMECH2022, 2022.06.
16. 藤木 拓人, 田原 健二, 直列アドミッタンス・インピーダンス制御による安定領域拡大, ROBOMECH2022, 2022.06.
17. チュルーンバト ウスフバヤル, 田原 健二, 無段変速機構を有するマニピュレータの手先出力拡大のための変速アルゴリズムの構築, ROBOMECH2022, 2022.06.
18. Ha Thang Long Doan, Kenji Tahara , Data-driven-based Stable Object Grasping for a Triple-fingered Under-actuated Robotic Hand, IEEE SII2023, 2023.01.
19. Shoki Tsuboi, Hitoshi Kino, Kenji Tahara, End-Point stiffness and joint viscosity control of musculoskeletal robotic arm using muscle redundancy, IEEE/RSJ IROS2022, 2022.10.
20. 本司澄空, 田原健二, 駆動ワイヤ情報を用いた腱駆動ソフトグリッパの指先力推定, 第22回 計測自動制御学会 システムインテグレーション部門講演会, 2021.12.
21. 伊藤壮平,田原健二, 多指ロボットハンドの転がり接触を考慮したセンサレス把持剛性制御, 第39回日本ロボット学会学術講演会, 2021.09.
22. 藤木拓人,田原健二, 直列アドミッタンス・インピーダンス制御の実験的検証, 第39回日本ロボット学会学術講演会, 2021.09.
23. 吉田優太郎, 林亮, 岩﨑政仁, 田原健二, 拮抗配置された回転型釣糸人工筋肉アクチュエータのセンサレストルク制御, ロボティクス・メカトロニクス講演会2021, 2021.06.
24. 壷井翔貴, 木野仁, 田原健二, 筋骨格構造を持つ腱駆動冗長マニピュレータによる手先剛性制御, ロボティクス・メカトロニクス講演会2021, 2021.06.
25. Takuto Fujiki,Kenji Tahara, Numerical simulations of a novel force controller serially combining the admittance and impedance controllers, IEEE ICRA2021, 2021.06.
26. 福田圭太郎, 藤木拓人, 田原健二, 半球足を持つ二足歩行ロボットを用いた車輪移動と歩行の遷移動作, 第21回 公益社団法人 計測自動制御学会システムインテグレーション部門講演会, 2020.12, In order to realize effective mobility for robots that are expected to work around human’s living space, a bipedal robot that has hemispheric feet as one of the wheeled-leg robots has been developed. Up to now, the gait generation with wheels movement method on the sagittal plane, which does not consider the transition between wheel movement and walking movement, has already been proposed. On the other hand, the movement transition control is important in order for this kind of dual mobility robot to be useful in a real situation. In this paper, a control method for the transition between the wheel and the walking movement of the wheeled-leg mobile robot with hemispherical feet is proposed. The effectiveness of the proposed method is demonstrated through numerical simulation results using a 7-link dynamics model on the sagittal plane.
.
27. チェスンヒョン, 田原健二, 多指ハンドの指先姿勢による接触位置推定を用いたセンサレス把持物体姿勢制御, 第21回 公益社団法人 計測自動制御学会システムインテグレーション部門講演会, 2020.12, This paper proposes a method for controlling the position and orientation of a grasping object by a multi-fingered robotic hand without using external sensing information such as a visual camera and force sensor. In our previous study, a sensorless orientation control method for a grasped object has already been proposed so far. However, there remained considerable orientation error due to only the use of virtual object information which does not use any external sensing information. In this paper, the contact position with each fingertip and the grasped object using each fingertip orientation information and the virtual object frame is estimated. By using the estimated information, the control accuracy is improved. Its usefulness is demonstrated through numerical simulation results using a three multi-fingered robotic hand model.
.
28. 藤木拓人, 田原健二, 独立異方剛性を持つアドミッタンス・インピーダンス制御の環境適応性, 第21回 公益社団法人 計測自動制御学会システムインテグレーション部門講演会, 2020.12, Impedance control and admittance control are known as force control methods that use the relationship between force and velocity. Up to now, we have proposed a force control method that combines the advantages of impedance and admittance controllers. This study demonstrates the usefulness of the proposed method in the case of a two-dimensional plane and the superiority of mechanical property design by stiffness ellipses.
.
29. Sumitaka Honji, Kenji Tahara, Dynamic Modeling and Joint Design of a Cable Driven Soft Gripper, 2020 IEEE International Conference on Soft Robotics, 2020.05.
30. 藤木 拓人, 田原 健二, アドミッタンス・インピーダンス制御の機械特性変化に関する定性的解析, ロボティクス・メカトロニクス講演会 2020, 2020.05.
31. 林 亮, 田原 健二, 回転型釣糸人工筋肉アクチュエータのセンサレストルク制御, ロボティクス・メカトロニクス講演会 2020, 2020.05, A Twisted Polymeric Fiber Actuator (TPFA) has been attracting attention as a new actuator that is silent, inexpensive, and can directly extract a rotational motion. Until now, we have proposed a sensorless rotational angle controller using estimated temperature feedback in order to take advantage of the low cost of TPFA. In order to construct a sensorless torque control method as an expansion of the utility of the TPFA, the relationship between output torque and change in temperature is modeled and the sensorless torque controller is designed. The proposed method is eventually verified through experiments..
32. 福田 圭太郎, 藤木 拓人, 田原 健二, 半球足を持つ脚車輪型移動ロボットの車輪移動を伴う歩容生成, ロボティクス・メカトロニクス講演会 2020, 2020.05.
33. 岩﨑 政仁, 田原 健二, 釣⽷⼈⼯筋⾁を⽤いた多関節ロボット指の姿勢制御, 第64回システム制御情報学会研究発表講演会, 2020.05.
34. 細見 直弘, 田原 健二, 二本指ロボットによる把持物体の分解剛性制御, 第25回ロボティクスシンポジア, 2020.03.
35. Seunghyun Choi, Kenji Tahara, Development of a Visual-Tactile Fingertip Sensor and an Object Manipulation Method using a Multi-Fingered Robotic Hand, 2020 IEEE/SICE International Symposium on System Integration, SII 2020, 2020.01, [URL], In this paper, a novel visual-tactile sensor is proposed and an object manipulation method of a grasped object by a multi-fingered robotic hand is proposed by detecting a contact position using the visual-tactile sensor. The visual-tactile sensor is composed of a hemispheric fingertip part made of soft silicone with hollow inside and a general USB camera located at the inside of the fingertip to detect the displacement of many point markers embedded in the silicone. The deformation of each point marker due to a contact force is measured and a contact position is estimated in stable through a novel method of creating virtual points in figuring out the point clouds. Not only to demonstrate the estimation performance of the new visual-tactile sensor itself, but its practical usefulness in a grasping and manipulation task is also illustrated as well. By using a contact position obtained from the proposed sensor and the position of each fingertip obtained from kinematics, the position and orientation of a grasped object are estimated and controlled. Its performance is demonstrated through numerical simulation results..
36. 林 亮, 田原 健二, 回転型釣糸人工筋肉の非線形補償による角度制御精度の向上, 第20回計測自動制御学会システムインテグレーション部門講演会, 2019.12.
37. 藤木 拓人, 田原 健二, インピーダンス制御とアドミッタンス制御の融合による力制御の拡張, 第20回計測自動制御学会システムインテグレーション部門講演会, 2019.12.
38. 本司 澄空, 田原 健二, 腱駆動型ソフトグリッパの関節粘性のモデル化, 第20回計測自動制御学会システムインテグレーション部門講演会, 2019.12.
39. Yuki Matsutani, Kenji Tahara, Hitoshi Kino, Hiroaki Ochi, Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms, 17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017, 2017.12, This paper proposes a new tendon-driven robot with variable joint stiffness mechanisms. The tendon-driven robot is able to vary the stiffness of joints by sliding variable stiffness mechanisms over the link by wire tensions. As a reason for that structure and moment arms of the tendon-driven robot are changed depending on the position of the variable mechanism. Thus in this paper, the tendon-driven robot with variable stiffness mechanisms is designed, and the stiffness of the tendon-driven robot is evaluated by using a stiffness ellipsoid..
40. 舛屋賢, 小野秀, 高木賢太郎, 田原健二, 温度の逆ダイナミクスをHammersteinモデルで近似した釣糸人工筋肉のフィードフォワード制御, 第35回日本ロボット学会学術講演会, 2017.09.
41. 小野秀, 舛屋賢, 高木賢太郎, 田原健二, 繰り返し学習制御による釣糸アクチュエータを用いた1自由度マニピュレータの軌道追従制御, 第35回日本ロボット学会学術講演会, 2017.09.
42. 丸林央樹, 舛屋賢, 杉原知道, 田原健二, 半球足を持つ二足歩行ロボットの倒立振子モデルにおけるバランス制御, 第35回日本ロボット学会学術講演会, 2017.09.
43. Ken Masuya, Shu Ono, Kentaro Takagi, Kenji Tahara, Nonlinear dynamics of twisted and coiled polymer actuator made of conductive nylon based on the energy balance, 2017 IEEE International Conference on Advanced Intelligent Mechatronics, AIM 2017, 2017.08, This paper proposes a novel dynamics model of the twisted and coiled polymer actuator (TCPA) which is one of the artificial muscles recently discovered. It can be driven by Joule heating and can contract up to 25%. Most of the conventional works employed the linear model of TCPA which represents the relationships between the input voltage, the temperature, and the displacement, but the real TCPA shows the nonlinearity. Although a nonlinear model was proposed based on the curve fitting, it is difficult to apply the model to the various TCPAs. Additionally, the conventional works cannot explain the effect of the convective heat transfer condition on the displacement behavior of TCPA. This paper aims to construct a general nonlinear model of TCPA based on the following two ideas: (1) The energy balance of TCPA and (2) the temperature and velocity dependence of the heat transfer coefficient. The temperature model is obtained from the time derivative of the energy balance, and the displacement model is derived as Lagrange's equation of motion with the dissipation function. Through experiments, it is verified that the proposed model is closer to the real dynamics than the conventional linear model..
44. 舛屋賢, 小野秀, 高木賢太郎, 田原健二, 対流熱伝達の温度・速度依存性に基づく釣糸人工筋肉の変位モデリング, ROBOMECH2017, 2017.05.
45. 舛屋賢, 小野秀, 高木賢太郎, 田原健二, 釣糸人工筋肉の束を利用したアクチュエータユニットの開発, ROBOMECH2017, 2017.05.
46. 小野秀, 舛屋賢, 高木賢太郎, 田原健二, 複数の釣糸アクチュエータを用いた2自由度マニピュレータの位置・剛性制御, ROBOMECH2017, 2017.05.
47. 久保田洋輝, 田原健二, 誘電エラストマーアクチュエータを用いた1自由度マニピュレータの位置・力制御, ROBOMECH2017, 2017.05.
48. 丸林央樹, 田原健二, 柔軟半球足を持つ二足歩行ロボットの開発, SI2016, 2016.12.
49. 佐藤正昂, 木野仁, 田原健二, 筋骨格アームによる筋内力のつり合いを利用した手先軌道追従制御, SI2016, 2016.12.
50. チェスンヒョン, 田原健二, 仮想物体位置情報の更新による外力に対してロバストな把持制御手法, SI2016, 2016.12.
51. 大藤康平, 河村 晃宏, 辻徳生, 田原健二, 外界センサ情報と仮想物体情報の組合せによる未知物体の把持・操作手法の実験的検証, SI2016, 2016.12.
52. Kenji Tahara, Yuki Matsutani, Daisuke Nakagawa, Masataka Sato, Hitoshi Kino, Variable combination of feed-forward and feedback manners for set-point control of a musculoskeletal arm considering the maximum exertable muscular force, 42nd Conference of the Industrial Electronics Society, IECON 2016, 2016.12, In this paper, our previously proposed set-point control method for a musculoskeletal system is improved to reduce required muscular forces and to avoid a saturation of muscular forces during movement. The previous method is robust against a considerable time-delay in sensory information, but it still requires large muscular forces to accomplish a desired position, and the maximum exertable muscular force has not yet been taken into consideration. To cope with these two issues, two variable parameters are newly introduced. One is for changing the combination ratio of feed-forward and feedback controllers to reduce necessary muscular forces. The other is for avoiding the saturation of muscular forces during movement The effectiveness of the proposed controller is demonstrated through several numerical simulation results..
53. Takeshi Arakawa, Kentaro Takagi, Kenji Tahara, Kinji Asaka, Position control of fishing line artificial muscles (coiled polymer actuators) from nylon thread, SIPE, 2016.03.
54. Tetsuya Morizono, Kenji Tahara, Hitoshi Kino, Experimental investigation of contribution of biarticular actuation to mappings between sensory and motor spaces, 41st Annual Conf. of the IEEE Industrial Electronics Society, 2015.11.
55. Hiroaki Ochi, Hitoshi Kino, Kenji Tahara, Yuki Matsutani, Geometric conditions for feedforward positioning of musculoskeletal tendon-driven structure, 41st Annual Conf. of the IEEE Industrial Electronics Society, 2015.11.
56. Tokuo Tsuji, Kosei Baba, Kenji Tahara, Kensuke Harada, KEN'ICHI MOROOKA, Ryo Kurazume, Grasp stability evaluation based on energy tolerance in potential field, IEEE⁄RSJ Int. Conf. Intell. Robots, Syst., 2015.09.
57. Tomofumi Okada, Kenji Tahara, Development of a two-link planar manipulator with continuously variable transmission mechanism, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2014, 2014.07, This paper proposes a novel two-link planar manipulator with continuously variable transmission (CVT) mechanism by means of plural linear shaft motors. In our previous works, we have proposed the parallel-link manipulator with the CVT mechanism which has two orthogonal DOFs. However, its configuration is not useful for a practical field because only one main link can be rotated around two joints like a joystick. In order for this mechanism to be more useful, the two-link planar type manipulator with the CVT is newly modeled and developed. Firstly, the proposed manipulator is modeled, and its control signals are designed. Next, the output force of the end-point of the manipulator is evaluated by using both the Manipulating-Force Ellipsoid and the Dynamic Manipulability Ellipsoid. After that, several fundamental experiments are performed to evaluate the CVT mechanism and show the effectiveness of the proposed manipulator..
58. Yuki Matsutani, Kenji Tahara, Hitoshi Kino, Hiroaki Ochi, Motoji Yamamoto, Set-point control of a musculoskeletal arm by the complementary combination of a feedforward and feedback Manner, 2014 IEEE International Conference on Robotics and Automation, 2014.06.
59. Miao Li, Hang Yin, Kenji Tahara, Aude Billard, Learning object-level impedance control for robust grasping and dexterous manipulation, 2014 IEEE International Conference on Robotics and Automation, 2014.06.
60. Kenji Tahara, Yuta Kuboyama, Ryo Kurazume, Iterative learning control for a musculoskeletal arm: Utilizing multiple space variables to improve the robustness, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2012.10.
61. K. Tahara, K. Maruta, A. Kawamura and M. Yamamoto, Externally sensorless dynamic regrasping and manipulation by a triple-fingered robotic hand with torsional fingertip joints, IEEE Int. Conf. Robot. Automat., 2012.05.
62. A. Kawamura, K. Tahara, R. Kurazume and T. Hasegawa, Robust manipulation for temporary lack of sensory information by a multi-fingered hand-arm system, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2011.09.
63. K. Tahara, S. Iwasa, S. Naba and M. Yamamoto, High-backdrivable parallel-link manipulator with continuously variable transmission, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2011.09.
64. K. Tahara and S. Arimoto, Iterative learinig scheme for a redundant manipulator: Skilled hand writing motion on an arbitrary smooth surface, IEEE Int. Conf. Robot. Automat., 2011.05.
65. K. Tahara and H. Kino, Iterative learning control for a redundant musculoskeletal arm: Acquisition of adequate internal force, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2010.10.
66. K. Matsuo, K. Murakami, K. Niwaki, T. Hasegawa, K. Tahara and Ryo Kurazume, A tactile sensing for estimating the position and orientation of a joint-axis of a linked object, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2010.10.
67. K. Tahara, K. Maruta and M. Yamamoto, External sensorless dynamic object manipulation by a dual soft-fingered robotic hand with torsional fingertip motion, IEEE Int. Conf. Robot. Automat., 2010.05.
68. K. Tahara, S. Arimoto and M. Yoshida, Dynamic object manipulation using a virtual frame by a triple soft-fingered robotic hand, IEEE Int. Conf. Robot. Automat., 2010.05.
69. K. Matsuo, K. Murakami, T. Hasegawa, K. Tahara and R. Kurazume, Segmentation method of human manipulation task based on measurement of force imposed by a human hand on a grasped object, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2009.10.
70. M. Yoshida, S. Arimoto and K. Tahara, Pinching 2D object with arbitrary shape by two robot fingers under rolling constraints, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2009.10.
71. A. Kawamura, K. Tahara, R. Kurazume and T. Hasegawa, Dynamic grasping for an arbitrary polyhedral object by a multi-fingered hand-arm system, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2009.10.
72. K. Tahara, S. Arimoto and M. Yoshida, Dynamic force/torque equilibrium for stable grasping by a triple robotic fingers system, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2009.10.
73. M. Yoshida, S. Arimoto and K. Tahara, Modeling and control of a pair of robot fingers with saddle joint under orderless actuations, IEEE Int. Conf. Robot. Automat., 2009.05.
74. H. Kino, S. Kikuchi, T. Yahiro and K. Tahara, Basic study of biarticular muscle’s effect on muscular internal force control based on physiological hypotheses, IEEE Int. Conf. Robot. Automat., 2009.05.
75. S. Arimoto, M. Yoshida, M. Sekimoto and K. Tahara, A Riemannian-Geometry approach for dynamics and control of object manipulation under constraints, IEEE Int. Conf. Robot. Automat., 2009.05.
76. K. Tahara, S. Arimoto and M. Yoshida, Dynamic object grasping by a triple-fingered robotic hand, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2008.09.
77. K. Tahara, S. Arimoto, M. Sekimoto, M. Yoshida and Z.W. Luo, On iterative learning control for simultaneous force/position trajectory tracking by using a 5 d.o.f. robotic thumb under non-holonomic rolling constraints, IEEE Int. Conf. Robot. Automat., 2008.05.
78. K. Tahara, S. Arimoto, Z.W. Luo and M. Yoshida, On control for "Blind Touching" by human-like thumb robots, IEEE Int. Conf. Robot. Automat., 2007.04.
79. M. Onishi, Z.W. Luo, S. Hirano, K. Tahara and T. Mukai, Generation of human care behaviors by human-interactive robot RI-MAN, IEEE Int. Conf. Robot. Automat., 2007.04.
80. K. Tahara, Z.W. Luo and S. Arimoto, On control mechanism of human-like reaching movements with musculo-skeletal redundancy, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2006.10.
81. T. Odashima, M. Onishi, K. Tahara, K. Takagi, F. Asano, Y. Kato, H. Nakashima, Y. Kobayashi, T. Mukai, Z.W. Luo and S. Hosoe, A soft human-interactive robot RI-MAN, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2006.10.
82. K. Tahara, Z.W. Luo, R. Ozawa, J.-H. Bae and S. Arimoto, Bio-mimetic study on pinching motions of a dual-finger model with synergistic actuation of antagonist muscles, IEEE Int. Conf. Robot. Automat., 2006.05.
83. K. Tahara, Z.W. Luo, S. Arimoto and H. Kino, Sensory-motor control of a muscle redundant arm for reaching movements -Convergence analysis and gravity compensation-, IEEE/RSJ Int. Conf. Intell. Robots, Syst., 2005.08.
84. K. Tahara, Z.W. Luo, S. Arimoto and H. Kino, Task-space feedback control for a two-link arm driven by six muscles with variable damping and elastic properties, IEEE Int. Conf. Robot. Automat., 2005.04.
特許出願・取得
特許出願件数  6件
特許登録件数  0件
その他の優れた研究業績
2021.06, IEEE ICRA2021 Workshop において招待講演
タイトル:「Object Grasping and Manipulation under Inadequate Sensory Information」.
学会活動
所属学会名
公益社団法人 計測自動制御学会
一般社団法人 日本ロボット学会
一般社団法人 日本機械学会
IEEE Robotics and Automation Society
学協会役員等への就任
2021.04~2023.03, 一般社団法人 日本ロボット学会, 理事.
2020.04~2022.03, 一般社団法人 日本ロボット学会, Advanced Robotidcs Award選考委員会.
2018.04~2020.03, 一般社団法人 日本ロボット学会, ヒューマンセントリックロボティクス研究専門委員会委員長.
2017.04~2019.03, 一般社団法人 日本機械学会, 運営委員.
2018.04~2020.03, 一般社団法人 日本ロボット学会, 論文査読委員会委員.
2015.04~2017.03, 一般社団法人 日本機械学会, 運営委員.
2014.04~2015.03, 一般社団法人 日本機械学会, 九州支部学生会 顧問.
2014.04~2016.03, 公益社団法人 計測自動制御学会, 幹事.
2010.04~2013.03, 一般社団法人 日本ロボット学会, 評議員.
学会大会・会議・シンポジウム等における役割
2026.06.10~2026.06.13, ROBOMECH2026, 実行委員長.
2025.10.19~2025.10.25, IEEE/RSJ IROS2025, Exhibition Co-Chair.
2024.03.05~2024.03.06, 第29回ロボティクスシンポジア, プログラム委員長.
2023.08.28~2023.08.31, IEEE/RSJ RO-MAN2023, Award Co-Chair.
2023.03.15~2023.03.16, 第28回ロボティクスシンポジア, プログラム副委員長.
2021.12.15~2021.12.17, 第22回計測自動制御学会システムインテグレーション部門講演会, 実行副委員長.
2021.12.01~2023.01.20, IEEE/SICE SII2023, PC Chair.
2021.09.27~2021.10.01, IEEE/RSJ IROS2021, Associate Editor.
2020.12.16~2020.12.18, 第21回計測自動制御学会システムインテグレーション部門講演会, 幹事.
2020.10.25~2021.01.24, IEEE/RSJ IROS2020, Associate Editor.
2019.11.04~2019.11.08, IROS2019, Associate Editor.
2019.03.14~2019.03.15, 第24回ロボティクスシンポジア, その他.
2018.10.01~2017.10.05, IROS2018, Associate Editor.
2018.03.14~2018.03.15, 第23回ロボティクスシンポジア, その他.
2017.09.24~2017.09.28, IROS2017, Other.
2016.10.09~2016.10.14, IROS2016, Other.
2016.09.11~2016.09.14, 日本機械学会年次大会, その他.
2015.09.28~2015.10.02, IROS2015, Other.
2015.03.15~2015.03.16, 第20回ロボティクスシンポジア, その他.
2014.09.14~2014.09.18, IROS2014, Other.
2014.09.04~2014.09.06, 第32回日本ロボット学会学術講演会, その他.
2014.03.13~2014.03.14, 第19回ロボティクスシンポジア, その他.
2012.12.18~2012.12.20, SII2012, Other.
2012.10.07~2012.10.12, IROS2012, Other.
2011.12.07~2011.12.11, ROBIO2011, Other.
2010.12.14~2010.12.18, ROBIO2010, Other.
2010.12.07~2010.12.10, ICARCV2010, Other.
2010.10.18~2010.10.22, IROS2010, Other.
2009.12.19~2009.12.23, ROBIO2009, Other.
2009.10.11~2009.10.15, IROS2009, Other.
2009.05.12~2009.05.17, ICRA2009, Other.
2008.06.25~2008.06.28, RSS2008, Other.
2008.06.20~2011.06.23, ICIA2008, Other.
2005.12.16~2005.12.18, SI2005, その他.
2005.08.02~2005.08.06, IROS2006, Other.
学会誌・雑誌・著書の編集への参加状況
2020.01~2021.12, 計測自動制御学会論文集, 国内, 編集委員.
2018.03, IEEE Robotics and Automation Letters, 国際, 編集委員.
2018.04~2020.03, 日本ロボット学会誌, 国内, 査読委員.
2016.04~2018.03, 日本ロボット学会誌, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2023年度
2022年度 10  30  44 
2021年度 16  28 
2020年度 15  15  35 
2019年度 14  15  33 
2018年度 10  10  26 
2017年度 13 
2016年度 12  25 
2015年度 14  27  47 
2014年度 16  20  42 
2013年度 17 
2012年度 21  28 
2011年度 18  30 
2010年度 12    20 
2009年度 11    14 
2008年度 14    17 
2007年度   11 
2006年度  
2005年度    
その他の研究活動
海外渡航状況, 海外での教育研究歴
Georgia Insititute of Technology, UnitedStatesofAmerica, 2023.01~2023.01.
Hawaii Convention Center, UnitedStatesofAmerica, 2020.01~2020.01.
COEX, Korea, 2019.04~2019.04.
Science Centre, NewZealand, 2018.07~2018.07.
Madrid Municipal Conference Centre, Spain, 2018.09~2018.10.
The Brisbane Convention & Exhibition Venue, Australia, 2018.05~2018.05.
Grand Hotel Palazza Livorno, Italy, 2018.04~2018.04.
The REP Theatre in Birmingham, UnitedKingdom, 2017.11~2017.11.
EPFL, Switzerland, 2017.03~2017.03.
The State University of New York at Stony Brook, UnitedStatesofAmerica, 2017.02~2017.08.
Singapore, Singapore, 2017.05~2017.05.
KAIST, Korea, 2016.09~2016.09.
Daejeon, Korea, 2016.10~2016.10.
Guangzhou, China, 2016.08~2016.08.
Palazzo dei Congressi, Italy, 2016.10~2016.10.
EPFL, Switzerland, 2015.03~2015.03.
The University of Illinois at Urbana–Champaign, UnitedStatesofAmerica, 2015.02~2015.02.
Congress Center Hamburg, Germany, 2015.09~2015.10.
EPFL, Switzerland, 2015.12~2015.12.
Hong Kong Convention and Exhibition Centre, Hong Kong , 2014.06~2014.06.
Mercure Hotel and the Nouveau Théâtre de Besançon, France, 2014.07~2014.07.
EPFL, Switzerland, 2014.07~2014.07.
UC Santa Cruz, UnitedStatesofAmerica, 2014.11~2014.11.
EPFL, Switzerland, 2013.03~2014.02.
University of Hawaii at Manoa, UnitedStatesofAmerica, 2012.03~2012.03.
Saint Paul River Centre, UnitedStatesofAmerica, 2012.05~2012.05.
the Hotel Tivoli Marina Vilamoura, Portugal, 2012.10~2012.10.
The Shanghai International Conference Center, China, 2011.05~2011.05.
Hilton San Francisco Union Square, UnitedStatesofAmerica, 2011.09~2011.09.
The Zhongguanyuan Global Village PKU, China, 2011.10~2011.10.
The Anchorage Convention District, Anchorage, UnitedStatesofAmerica, 2010.05~2010.05.
Isola di San Servolo, Italy, 2010.10~2010.10.
Taipei International Convention Center, Taiwan, 2010.10~2010.10.
The Munich Marriott Hotel, Germany, 2009.06~2009.06.
The Hyatt Regency St. Louis Riverfront, UnitedStatesofAmerica, 2009.10~2009.10.
The Pasadena Conference Center, Pasadena, UnitedStatesofAmerica, 2008.05~2008.05.
The Acropolis Convention Center, Nice, France, 2008.09~2008.09.
Fragrant Hill Hotel, Beijing, China, 2008.11~2008.11.
The University of Roma "La Sapienza", Italy, 2007.04~2007.04.
The Hilton, Orlando, UnitedStatesofAmerica, 2006.05~2006.05.
The International Convention Center, Beijing, China, 2006.10~2006.10.
The Palau de Congressos de Catalunya, Spain, 2005.04~2005.04.
Shaw Conference Centre, Canada, 2005.08~2005.08.
Universitaire de Cherbourg, France, 2004.09~2004.09.
Chinese University of Hong Kong, Hong Kong , 1998.07~1998.09.
外国人研究者等の受入れ状況
2017.01~2017.01, 2週間未満, Wuhan University, China, .
2015.02~2015.04, 1ヶ月以上, Aristotle University of Thessaloniki, Greece.
受賞
部門欧文誌表彰, 日本機械学会ロボティクス・メカトロニクス部門, 2021.06.
ROBOMECH表彰(学術研究分野), 日本機械学会ロボティクス・メカトロニクス部門, 2021.06.
The Best Session Presentation, IEEE IES, 2016.10.
IEEE 2007 ICRA Best Manipulation paper Award Nomination Finalist, IEEE RAS, 2007.04.
IEEE 2006 ICRA Best Manipulation paper Award Nomination Finalist, IEEE RAS, 2006.05.
Best Inventions 2006, TIME誌, 2006.10.
優秀講演賞, 計測自動制御学会SI部門, 2006.12.
ベストセッション賞, 計測自動制御学会SI部門, 2005.12.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2021年度~2023年度, 基盤研究(B), 分担, 筋骨格ポテンシャル法とソフトアクチュエータを融合した超多筋骨格ソフトロボティクス.
2020年度~2023年度, 基盤研究(A), 代表, 確率モデルベース制御とセンサフィードバックの融合によるソフトロボティクス制御工学.
2020年度~2022年度, 挑戦的研究(萌芽), 代表, 無音駆動する液冷人工筋ロボットハンド.
2017年度~2021年度, 基盤研究(B), 分担, 自己センシング高分子人工筋肉の開発と物理原理に基づく制御指向モデリング .
2016年度~2018年度, 基盤研究(B), 代表, 感覚運動統合における感覚情報の遅れやノイズにロバストな運動戦略.
2016年度~2018年度, 国際学術研究, 代表, 感覚フィードバックと体勢感覚情報の融合による巧みな物体マニピュレーション手法(国際共同研究強化).
2014年度~2016年度, 基盤研究(C), 分担, 内骨格生物における筋肉配置の潜在的意義の解明とロボットの動作生成への応用.
2014年度~2016年度, 挑戦的萌芽研究, 代表, 捻転柔軟半球足による複合モビリティ.
2013年度~2015年度, 若手研究(A), 代表, 感覚フィードバックと体勢感覚情報の融合による巧みな物体マニピュレーション手法.
2011年度~2013年度, 基盤研究(C), 連携, 触覚受容器の動特性に着目した能動触センシングの力学的解釈.
2008年度~2010年度, 基盤研究(C), 分担, 運動生理仮説に基づく筋内力制御とロボティクスへの応用.
2008年度~2010年度, 基盤研究(B), 代表, ロボットハンドにおける動的柔軟指先のモデル化と動的物体把持の実現.
2006年度~2007年度, 若手研究(B), 代表, 筋骨格冗長システムによる自然な動作の実現とロボットへの応用.
競争的資金(受託研究を含む)の採択状況
2018年度~2022年度, 内閣府戦略的イノベーション創造プログラム(SIP)第2期 フィジカル空間デジタルデータ処理基盤, 分担, 戦略的イノベーション創造プログラム(SIP)第2期/フィジカル空間デジタルデータ処理基盤/サブテーマⅢ: Society5.0実現のための社会実装技術/CPS構築のためのセンサリッチ柔軟エンドエフェクタシステム開発と実用化.
2015年度~2016年度, NEDO, 代表, 次世代ロボット中核技術開発(革新的ロボット要素技術分野) 「高分子人工筋肉アクチュエータによる柔らかな運動支援装具の研究開発」.
寄附金の受入状況
2012年度, 日揮・実吉奨学会, 日揮・実吉奨学会研究助成金/無段階可変剛性機構を有するパラレルリンクの制御法確立と,人の腕・脚運動の能補助装具への応用.
2011年度, 公益財団法人NSKメカトロニクス技術高度化財団, 技術交流助成.
学内資金・基金等への採択状況
2012年度~2013年度, 九大基金・若手教職員の長期海外派遣支援, 代表, 多指ロボットハンドの高知能・機能化について.
2012年度~2012年度, 九大基金・教職員の海外派遣等支援, 代表, Iterative Learning Control for a Musculoskeletal Arm: Utilizing Multiple Space Variables to Improve the Robustness.
2012年度~2012年度, 工学研究院若手研究者育成研究助成, 代表, 指先捻転機構を持つ多指ハンドを用いた視覚情報欠損に頑健な物体把持手法.
2011年度~2011年度, 工学研究院若手研究者育成研究助成, 代表, 無段変速機構を有するパラレルリンクマニピュレータの開発.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。