Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Masaki Tanaka Last modified date:2021.09.19

Professor / Materials Processing / Department of Materials Science and Engineering / Faculty of Engineering


Papers
1. Tatsuya Morikawa, Shimpei Yoshioka, Masaki Tanaka, Yuki Toji, Kohei Hasegawa, Analysis of work hardening behavior in ferrite-martensite dual-phase steels using micro-grid method, ISIJ International, 10.2355/isijinternational.ISIJINT-2020-616, 61, 2, 625-631, 2021.02.
2. Tubasa Suzuki, Masaki Tanaka, Tatsuya Morikawa, Yelm Okuyama, Jun Fujise, Toshiaki Ono, Tensile deformation of Si single crystals at high temperatures, Materials Science Forum, 10.4028/www.scientific.net/MSF.1016.1443, 1016 MSF, 1443-1447, 2021.01.
3. Bhargavi Rani Anne, Yelm Okuyama, Tatsuya Morikawa, Masaki Tanaka, Activated slip systems in bimodal Ti–6Al–4V plastically deformed at low and moderately high temperatures, Materials Science and Engineering A, 10.1016/j.msea.2020.140211, 798, 2020.11.
4. Masaki Tanaka, Toshiyuki Manabe, Tatsuya Morikawa, Kenji Higashida, Mechanism behind the Onset of Delamination in Wire-drawn Pearlitic Steels, ISIJ International, 10.2355/isijinternational.ISIJINT-2020-158, 60, 11, 2596-2603, 2020.11.
5. Jun Fujise, Bonggyun Ko, Toshiaki Ono, Masaki Tanaka, Effect of Surface Oxygen Concentration on Wafer Strength in Floating Zone Si Wafers, ECS Journal of Solid State Science and Technology, 10.1149/2162-8777/abbcb4, 9, 10, 2020.10.
6. Yelm Okuyama, Masaki Tanaka, Tetsuya Ohashi, Tatsuya Morikawa, Modelling and crystal plasticity analysis for the mechanical response of alloys with non-uniformly distributed secondary particles, ISIJ International, 10.2355/isijinternational.ISIJINT-2019-754, 60, 8, 1819-1828, 2020.08.
7. Muhammad Kozin, Keisuke Kusakabe, Masatoshi Aramaki, Naoya Yamada, Satoshi Oue, Yukiko Ozaki, Osamu Furukimi, Masaki Tanaka, Effect of nitriding-quenching and carburizing-quenching processes on the wear resistance of the sintered pure iron, Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 10.2497/jjspm.67.173, 67, 4, 173-181, 2020.04, 本研究では,純鉄焼結体に窒化焼入れ(NQ)および浸炭焼入れ(CQ)の2つの異なる熱処理を施し,その摩耗特性を調べた。観察の結果,各処理後の表層にはマルテンサイト層が形成されていたが,NQマルテンサイトの硬度はCQマルテンサイトの硬度よりもはるかに高かった。CQ試験片の摩耗量は,初期硬さの値が低いにもかかわらず,NQマルテンサイトの摩耗量よりもわずかに小さかった。一方,摺動試験後のCQ表面の硬さは,NQ表面に比べて大幅に上昇し,耐摩耗性が向上した。また,EBSD解析により,CQ試験片表面には摺動方向に沿って塑性変形が生じていることが確認された。さらに,CQ試験片表面の表層に沿って微小領域X線回折を行ったところ,試験中に局所的に減少した少量のオーステナイトが保持されていることがわかった。したがって,CQ処理面は,マルテンサイト自身のひずみ硬化に加えて,マルテンサイト中に分散した保持オーステナイトの応力誘起変態による表面硬化によって,優れた耐摩耗性を示した。一方,NQ試験片の摩耗面では,表面のマルテンサイト層ではなく,マルテンサイト層下のフェライト粒がわずかに塑性変形していた。このマルテンサイト層下の変形は,内側と熱処理面との硬度差によるものであり,摺動面の凹形状形成に寄与していると考えられる。このように,本研究ではCQ材とNQ材の摩耗メカニズムの違いが明らかとなった。.
8. Investigation of strain redistribution mechanism in α titanium by image-based crystal plasticity analysis
Abstract: Mechanisms of strain localization and localized activation of slip systems in α titanium were investigated using a crystal plasticity finite element (CPFE) method. A microscopic image of polycrystalline α titanium was obtained by electron back scatter diffraction (EBSD), and the data was converted from the microscopic image into the geometric model for the CPFE analysis. The uniaxial tensile deformation of the model was numerically reproduced by the CPFE method employing a dislocation density based constitutive equation. The results showed that the strain distribution corresponds well with that obtained by the experiment when the ratio of critical resolved shear stress (CRSS) employed in the numerical simulation is basal:prismatic ⟨a⟩:1st-pyramidal ⟨a⟩:1st-pyramidal ⟨c + a⟩:2nd-pyramidal ⟨c + a⟩ = 1.0:1.0:1.3:2.0:2.0. Next, numerical simulations were performed by changing the ratio of CRSS among the slip systems but keeping all other conditions the same as those of the above uniaxial tensile analysis. The results showed that strain redistribution typically occurs between hard and soft regions with high and low CRSSs for the primary slip systems; this redistribution resulted in a localized higher strain and activation of slip systems. However, localized activation of slip systems was observed even in slip systems with higher CRSS; the mechanism could be explained by the strain redistribution in the tensile direction. Graphical abstract: [Figure not available: see fulltext.]..
9. Temperature dependence of the yield stress in α-titanium investigated with crystal plasticity analysis
© 2018 Trans Tech Publications, Switzerland. The effect of the activated slip systems on the temperature dependence of yield stress was investigated in α-Ti by using crystal plasticity finite element method. A model for finite element analysis (FEA) was constructed based on experimental results. The displacement in FEA was applied up to the nominal strain of 4% which is the same strain as the experimental one. Stress-strain curves were obtained, which corresponds to experimental data taken every 50 K between 73 K and 673 K. The used material constants which are temperature dependent were elastic constants, and lattice friction stresses. The lattice friction stresses of basal slip systems were set to be higher than that of pyramidal slip systems at 73 K. Then, the lattice friction stresses were set to be closer as the temperature increases. It was found that the activation of slip systems is strong temperature dependent, and that the yield stress depends on the number of active slip systems..
10. Development of a EBSD-FEM data conversion interface and the image-based crystal plasticity analysis.
11. Jun Fujise, Bonggyun Ko, Toshiaki Ono, Masaki Tanaka, Measurement and empirical equation of critical stresses for slip generation from oxide precipitates in silicon wafers, Japanese Journal of Applied Physics, 10.7567/JJAP.57.035501, 57, 3, 2018.03.
12. Bhargavi Rani Anne, Masaki Tanaka, Tatsuya Morikawa, Temperature dependence of mechanical properties in dual phase ti-6al-4v, 10th International Conference on Processing and Manufacturing of Advanced Materials, 2018 THERMEC 2018, 10.4028/www.scientific.net/MSF.941.1479, 1479-1483, 2018.01.
13. Yelm Okuyama, Masaki Tanaka, Tetsuya Ohashi, Tatsuya Morikawa, Temperature dependence of the yield stress in α-titanium investigated with crystal plasticity analysis, 10th International Conference on Processing and Manufacturing of Advanced Materials, 2018 THERMEC 2018, 10.4028/www.scientific.net/MSF.941.1474, 1474-1478, 2018.01.
14. Tanaka M, Izumi D, Yoshimura N, Shigesato G, Hoshino M, Ushioda K, Higashida K, Temperature dependence of activation volume on Cu content of ultra-low carbon steel, Philosophical Magazine, 10.1080/14786435.2017.1359423, 97, 31, 2915-2930, Vol. 97, pp.2951-2930, 2017.11, [URL].
15. Nobuyuki Yoshimura, Kohsaku Ushioda, Mitsuharu Yonemura, Motomichi Koyama, Masaki Tanaka, Hiroshi Noguchi, Effect of the state of carbon on ductility in Fe-0.017mass%C ferritic steel, Materials Science and Engineering A, 10.1016/j.msea.2017.06.070, 701, 120-128, Vol.701, pp.120-128, 2017.07, [URL].
16. Osamu Furukimi, Chatcharit Kiattisaksri, Yuji Takeda, Masatoshi Aramaki, Satoshi Oue, Shinji Munetoh, Masaki Tanaka, Void nucleation behavior of single-crystal high-purity iron specimens subjected to tensile deformation, Materials Science and Engineering A, 10.1016/j.msea.2017.06.084, 701, 221-225, Vol. 701, pp.120-128, 2017.07, [URL].
17. Hiroshi Kaneko, Tatsuya Morikawa, Masaki Tanaka, Hirofumi Inoue, Kenji Higashida, Recrystallization texture and shear band formation in bending, Materials Transactions, 10.2320/matertrans.M2016363, 58, 2, 218-224, Vol. 58, pp.218-244, 2017.02, [URL].
18. Masaki Tanaka, Kenta Matsuo, Nobuyuki Yoshimura, Genichi Shigesato, Manabu Hoshino, Kohsaku Ushioda, Kenji Higashida, Effects of Ni and Mn on brittle-to-ductile transition in ultralow-carbon steels, Materials Science and Engineering A, 10.1016/j.msea.2016.11.045, 682, 370-375, Vol.682, pp.370-375, 2017.01, [URL].
19. Masaki Tanaka, Kenji Higashida, Temperature dependence of effective stress in severely deformed ultralow-carbon steel, Philosophical Magazine, 10.1080/14786435.2016.1183828, 96, 19, 1979-1992, Vol. 96, pp.1979-1992, 2016.07, [URL].
20. , [URL].
21. Sadamatsu S, Tanaka M, Higashida K, Matsumura S, Transmission electron microscopy of bulk specimens over 10μm in thickness, Ultramicroscopy, 10.1016/j.ultramic.2015.09.001, 162, 10-16, Vol.162, pp.10-16, 2016.03, [URL].
22. Masaki Tanaka, Hayato Saito, Motoki Yasumaru, Kenji Higashida, Nature of delamination cracks in pearlitic steels, Scripta Materialia, 10.1016/j.scriptamat.2015.09.004, 112, 32-36, 2016.02, [URL].
23. Damar Rastri Adhika, Masaki Tanaka, Takeshi Daio, Kenji Higashida, Crack tip shielding observed with high-resolution transmission electron microscopy, Microscopy, 10.1093/jmicro/dfv032, 64, 5, 335-340, 2015.10, [URL].
24. Takeshi Daio, Aleksandar Staykov, Limin Guo, Jianfeng Liu, Masaki Tanaka, Stephen Matthew Lyth, Kazunari Sasaki, Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO 2 Supports, Scientific Reports, 10.1038/srep13126, 5, 2015.08, [URL].
25. Damar Rastri Adhika, Masaki Tanaka, Kenji Higashida, Strain Field Around Lomer Sessile Dislocations in Silicon Measured using Geometric Phase Analysis, Trans. Mater. Res. Soc. Japan, Vol.40, pp.227-233,, 10.14723/tmrsj.40.227, 2015.08, [URL].
26. , [URL].
27. , [URL].
28. Thiti Sirithanakorn, Masaki Tanaka, Kenji Higashida, Brittle-to-ductile transitions and its relation to the deformability of cementite in fully pearlitic steels, Materials Science and Engineering A, 10.1016/j.msea.2014.06.007, 611, 383-387, 2014.08, [URL].
29. Masaki Tanaka, Tatsuro Onomoto, Chihiro Furusho, Toshihiro Tsuchiyama, Kenji Higashida, Decrease in the Brittle-to-ductile Transition Temperature in Cu Added Nickel-free Austenitic Stainless Steels, ISIJ INTERNATIONAL, 10.2355/isijinternational.54.1735, 54, 7, 1735-1740, 2014.07, [URL].
30. , [URL].
31. Thiti Sirthanakorn, Masaki Tanaka, Kenji Higashida, Two-step brittle-to-ductile transitions in pearlitic steels, Advanced Materials Research, 10.4028/www.scientific.net/AMR.922.706, 922, 706-710, 2014.05, [URL].
32. Tomotsugu Shimokawa, Takuma Oguro, Masaki Tanaka, Kenji Higashida, Tetsuya Ohashi, A multiscale approach for the deformation mechanism in pearlite microstructure: Atomistic study of the role of the heterointerface on ductility, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 10.1016/j.msea.2013.12.100, 598, 68-76, Vol.598, pp.68-76, 2014.03, [URL].
33. Masaki Tanaka, Atsushi Fujii, Hiroshi Noguchi, Kenji Higashida, Thermally activated processes of fatigue crack growth in steels, PHILOSOPHICAL MAGAZINE LETTERS, 10.1080/09500839.2013.872811, 94, 2, 95-102, 2014.02, [URL].
34. Masaki Tanaka, Yusuke Yoshimi, Kenji Higashida, Tomotsugu Shimokawa, Tetsuya Ohashi, A multiscale approach for the deformation mechanism in pearlite microstructure: Experimental measurements of strain distribution using a novel technique of precision markers, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 10.1016/j.msea.2013.09.072, 590, 37-43, 590, pp.37-43, 2014.01, [URL].
35. G. S. Liu, S. D. House, J. Kacher, M. Tanaka, K. Higashida, I. M. Robertson, Electron tomography of dislocation structures, MATERIALS CHARACTERIZATION, 10.1016/j.matchar.2013.09.016, 87, 1-11, 2014.01.
36. Tetsuya Ohashi, Lidyana Roslan, Kohsuke Takahashi, Tomotsugu Shimokawa, Masaki Tanaka, Kenji Higashida, A multiscale approach for the deformation mechanism in pearlite microstructure: Numerical evaluation of elasto-plastic deformation in fine lamellar structures, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 10.1016/j.msea.2013.09.032, 588, 214-220, Vol.588, pp.214-220, 2013.12, [URL].
37. Masaki Tanaka, Shunsaku Takano, Kenji Higashida, Enhancement of Low Temperature Toughness in Bulk Nanostructured Metals, MATERIALS TRANSACTIONS, 10.2320/matertrans.MH201319, 54, 9, 1624-1628, Vol. 54, No.9, pp.1624-1628, 2013.09, [URL].
38. Masaki Tanaka, Naoya Kamikawa, Nobuhiro Tsuji, Special Issue on Advanced Materials Science in Bulk Nanostructured Metals II PREFACE, MATERIALS TRANSACTIONS, 10.2320/matertrans.MPR2013906, 54, 9, 1539-1539, 2013.09.
39. Keiki Maeno, Masaki Tanaka, Kenji Higashida, Masahiro Fujikura, Kohsaku Ushioda, The brittle-to-ductile transition behaviour in Fe-Al single crystalline alloys, Advanced Materials Research, 10.4028/www.scientific.net/AMR.409.243, 409, 243-248, Vol. 409, pp.243-248, 2012.11.
40. M. Tanaka, T. Onomoto, T. Tsuchiyama, K. Higashida, Brittle to ductile transition in nickel free high nitrogen austenitic stainless steels, International Heat Treatment and Surface Engineering, 10.1179/1749514812Z.00000000029, 6, 3, 99-102, Vol.6, No.3, pp.99-102, 2012.09.
41. K. Tsujii, M. Tanaka, K. Higashida, M. Fujikura, K. Ushioda, Effect of Deformation Twinning on the Brittle-to-Ductile Transition in Fe-Al Single Crystalline Alloys., Proceedings of 4th International Conference on Fundamental Properties of Dislocations, Experimental Physics at Eötvös University and the Department of Materials Physics, pp. 41-45, 2012.09.
42. T. Shimokawa, M. Tanaka, K. Higashida, Role of Dislocation Emission from Grain Boundaries in Mechanical Properties of Bulk Nanostructured Metals, Proceedings of the International Workshop on Bulk Nanostructured Metals, pp. 27-34, 2012.06.
43. M. Tanaka, K. Higashida, T. Shimokawa, Brittle-to-ductile Transition in Bulk Nanostructured Metals, Proceedings of the International Workshop on Bulk Nanostructured Metals, pp. 15-20, 2012.06.
44. Masaki Tanaka, Tatsuro Onomoto, Toshihiro Tsuchiyama, Kenji Higashida, Brittle-to-ductile Transition in Nickel-free Austenitic Stainless Steels with High Nitrogen, ISIJ INTERNATIONAL, 10.2355/isijinternational.52.915, 52, 5, 915-921, Vol.52, No.5, pp.915-921, 2012.05, [URL].
45. Kenji Higashida, Masaki Tanaka, Mechanism behind Brittle-to-ductile Transition Understood by the Interaction between a Crack and Dislocations, ISIJ INTERNATIONAL, 10.2355/isijinternational.52.704, 52, 4, 704-709, 2012.04.
46. , [URL].
47. Tomotsugu Shimokawa, Masaki Tanaka, Kenji Higashida, Effect of Grain Boundaries on Fracture Toughness in Ultrafine-Grained Metals by Atomic-scale Computational Experiments, THERMEC 2011, PTS 1-4, 10.4028/www.scientific.net/MSF.706-709.1841, 706-709, 1841-+, Vol. 706-709, pp.1841-1846, 2012.01.
48. S. Hata, H. Miyazaki, S. Miyazaki, M. Mitsuhara, M. Tanaka, K. Kaneko, K. Higashida, K. Ikeda, H. Nakashima, S. Matsumura, J. S. Barnard, J. H. Sharp, P. A. Midgley, High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopy, ULTRAMICROSCOPY, 10.1016/j.ultramic.2011.03.021, 111, 8, 1168-1175, Vol.111, pp.1168-1175, 2011.07, [URL].
49. T. Shimokawa, M. Tanaka, K. Kinoshita, K. Higashida, Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals, PHYSICAL REVIEW B, 10.1103/PhysRevB.83.214113, 83, 21, Vol.83, 214113, 2011.06, [URL].
50. Masaki Tanaka, Keiki Maeno, Kenji Higashida, Masahiro Fujikura, Kohsaku Ushioda, The Increase in a Brittle-to-ductile Transition Temperature in Fe-Al Single Crystals, ISIJ INTERNATIONAL, 10.2355/isijinternational.51.999, 51, 6, 999-1004, Vol.51, No.6, pp.999-1004, 2011.06, [URL].
51. Yoshimasa Takahashi, Junji Sakamoto, Masaki Tanaka, Kenji Higashida, Hiroshi Noguchi, Effect of hydrogen on dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline iron silicon alloy, SCRIPTA MATERIALIA, 10.1016/j.scriptamat.2010.12.032, 64, 8, 721-724, Vol.64, pp.721-724, 2011.04.
52. Yoshimasa Takahashi, Keigo Yamaguchi, Masaki Tanaka, Kenji Higashida, Hiroshi Noguchi, On the micromechanism of hydrogen-assisted cracking in a single-crystalline iron-silicon alloy thin sheet, SCRIPTA MATERIALIA, 10.1016/j.scriptamat.2010.11.035, 64, 6, 537-540, Vol.64, pp.537-540, 2011.03.
53. Masaki Tanaka, Sunao Sadamatsu, Hiroto Nakamura, Kenji Higashida, The Early Stage of Dislocation Process around a Crack Tip Observed by HVEM-Tomography in Silicon Single Crystals, MATERIALS TRANSACTIONS, 10.2320/matertrans.MB201024, 52, 3, 352-357, Vol.52, No.3, pp.352-357, 2011.03, [URL].
54. Masaki Tanaka, Sunao Sadamatsu, Grace S. Liu, Hiroto Nakamura, Kenji Higashida, Ian M. Robertson, Sequential multiplication of dislocation sources along a crack front revealed by high-voltage electron microscopy and tomography, JOURNAL OF MATERIALS RESEARCH, 10.1557/jmr.2010.99, 26, 4, 508-513, Vol.26, No.4, pp.508-513, 2011.02, [URL].
55. Yoshimasa Takahashi, Junji Sakamoto, Masaki Tanaka, Kenji Higashida, Hiroshi Noguchi, Characterization of dislocation structures around a mixed-mode fatigue crack tip in a single-crystalline iron-silicon alloy, SCRIPTA MATERIALIA, 10.1016/j.scriptamat.2010.09.033, 64, 2, 157-160, Vol.64, pp.157-160, 2011.01.
56. K. Edalati, H. Iwaoka, Z. Horita, M. Tanaka, K. Higashida, H. Fujiwara, K. Ameyama, Fabrication of ultrafine-grained Ti-(5-50wt.%)Al2O3 composites using high-pressure torsion, KOVOVE MATERIALY-METALLIC MATERIALS, 10.4149/km_2011_1_85, 49, 1, 85-92, Vol. 49, No.1, pp.85-91, 2011.01.
57. Masaki Tanaka, Grace S. Liu, Tomonobu Kishida, Kenji Higashida, Ian M. Robertson, Transition from a punched-out dislocation to a slip dislocation revealed by electron tomography, JOURNAL OF MATERIALS RESEARCH, 10.1557/JMR.2010.0308, 25, 12, 2292-2296, Vol.25, pp.2292-2296, 2010.12, [URL].
58. Masaki Tanaka, Kenji Higashida, Tomotsugu Shimokawa, The effect of severe plastic deformation on the brittle-ductile transition in low carbon steel, Materials Science Forum, 10.4028/www.scientific.net/MSF.633-634.471, 633-634, 471-480, Vol. 633-634, pp. 471-480, 2010.11.
59. Masaki Tanaka, Kenji Higashida, Sunao Sadamatsu, Hiroto Nakamura, CRACK TIP DISLOCATIONS OBSERVED BY ELECTRON TOMOGRAPHY IN SINGLE CRYSTAL SILICON, CHALLENGES IN MATERIALS SCIENCE AND POSSIBILITIES IN 3D AND 4D CHARACTERIZATION TECHNIQUES, 443-448, (2010), p.443-448., 2010.10.
60. Yoshimasa Takahashi, Masaki Tanaka, Kenji Higashida, Kazuhiro Yasuda, Syo Matsumura, Hiroshi Noguchi, A combined environmental straining specimen holder for high-voltage electron microscopy, ULTRAMICROSCOPY, 10.1016/j.ultramic.2010.07.011, 110, 11, 1420-1427, Vol.110, pp.1420-1427., 2010.10.
61. Youn-Jeong Hong, Masaki Tanaka, Kenji Higashida, The Effect of Oxygen on the Brittle-to-Ductile Transition in Silicon Single Crystals, PRICM 7, PTS 1-3, 10.4028/www.scientific.net/MSF.654-656.1299, 654-656, 1299-1302, Vol.654-656, pp.1299-1302, 2010.08.
62. Y.-J. Hong, M. Tanaka, K. Maeno, K. Higashida, The effect of dopants on the brittle-to-ductile transition in silicon crystals, Journal of Physics: Conference Series, Vol.240, p.012141, 2010.08.
63. Masaki Tanaka, Masaki Honda, Sunao Sadamatsu, Kenji Higashida, 3-D structures of crack-tip dislocations and their shielding effect revealed by electron tomography, JOURNAL OF ELECTRON MICROSCOPY, 10.1093/jmicro/dfq031, 59, SUPPL. 1, S55-S60, Vol.59, pp.S55-S60, 2010.08.
64. Effect of gaseous hydrogen on cyclic slip behavior around a stage i fatigue crack tip in an iron alloy.
65. Masaki Tanaka, Keiki Maeno, Kenji Higashida, The Effect of Boron/Antimony on the Brittle-to-Ductile Transition in Silicon Single Crystals, MATERIALS TRANSACTIONS, 10.2320/matertrans.M2010048, 51, 7, 1206-1209, Vol.51, No.7, pp.1206-1029, 2010.07, [URL].
66. Kenji Higashida, Masaki Tanaka, Sunao Sadamatsu, Characterization of Crack-tip Dislocations and Their Effects on Materials Fracture, PRICM 7, PTS 1-3, 10.4028/www.scientific.net/MSF.654-656.2307, 654-656, 2307-2311, Vol.654-656, pp.2307-2311, 2010.06.
67. Kaveh Edalati, Zenji Horita, Hiroshi Fujiwara, Kei Ameyama, Masaki Tanaka, Kenji Higashida, High Strength and Ductility in Ball-Milled Titanium Powders Consolidated by High-Pressure Torsion, PRICM 7, PTS 1-3, 10.4028/www.scientific.net/MSF.654-656.1239, 654-656, 1239-+, Vol.654-656, pp.1239-1242, 2010.06.
68. Kaveh Edalati, Zenji Horita, Masaki Tanaka, Kenji Higashida, High Pressure Torsion of Pure Ti: Effect of Pressure and Strain on Allotropy, THERMEC 2009 SUPPLEMENT, 10.4028/www.scientific.net/AMR.89-91.171, 89-91, 171-+, 2010.06.
69. Y. Takahashi, M. Tanaka, K. Higashida, K. Yamaguchi, H. Noguchi, An intrinsic effect of hydrogen on cyclic slip deformation around a {110} fatigue crack in Fe-3.2 wt.% Si alloy, ACTA MATERIALIA, 10.1016/j.actamat.2009.11.040, 58, 6, 1972-1981, Vol.58, pp.1972-1981, 2010.04.
70. M. Tanaka, K. Higashida and T. Shimokawa, The brittle-to-ductile transition in severely deformed low carbon steel, Supplemental Progeedings, Vol.2, TMS, 787-794, 2010.02.
71. S. Sadamatsu, M. Tanaka, K. Higashida, K. Kaneko, M. Mitsuhara, S. Hata, M. Honda, Crack tip dislocations observed by combining scanning transmission electron microscopy and computed tomography, THERMEC 2009 SUPPLEMENT, 10.4028/www.scientific.net/AMR.89-91.473, 89-91, 473-+, Vol.89-91, pp.473-478, 2010.01.
72. K. Edalati, Z. Horita, M. Tanaka and K. Higashida, High pressure torsion of pure Ti: Effect of pressure and strain on allotropy, Advanced Materials Research, Vol.89-91, pp.171-176, 2010.01.
73. Sunao Sadamatsu, Masaki Tanaka, Masaki Honda, Kenji Higashida, Crack tip dislocations observed by TEM-tomography in silicon single crystals, 15TH INTERNATIONAL CONFERENCE ON THE STRENGTH OF MATERIALS (ICSMA-15), 10.1088/1742-6596/240/1/012142, 240, Vol.240, p.012142, 2010.01.
74. M. Tanaka, K. Higashida and T. Shimokawa, The role of dislocation sources on the brittle-ductile transition, Proceedings of the 2nd International Symposium on Steel Science (ISSS2009), 285-287, 2009.10.
75. Youn-Jeong Hong, Masaki Tanaka, Kenji Higashida, The Effect of Arsenic on the Brittle-to-Ductile Transition in Si Single Crystals, MATERIALS TRANSACTIONS, 10.2320/matertrans.MAW200919, 50, 9, 2177-2181, Vo.50, pp.2177-2181, 2009.09, [URL].
76. Yoshimasa Takahashi, Masaki Tanaka, Kenji Higashida, Hiroshi Noguchi, Hydrogen-induced slip localization around a quasi-brittle fatigue crack observed by high-voltage electron microscopy, SCRIPTA MATERIALIA, 10.1016/j.scriptamat.2009.03.020, 61, 2, 145-148, Vol.61, No.2, pp.145-148, 2009.07, [URL].
77. Yoshimasa Takahashi, Masaki Tanaka, Kenji Higashida, Hiroshi Noguchi, High-voltage electron-microscopic observation of cyclic slip behavior around a fatigue crack tip in an iron alloy, SCRIPTA MATERIALIA, 10.1016/j.scriptamat.2009.01.002, 60, 8, 717-720, Vol.40, No.8, pp.717-720, 2009.04, [URL].
78. Masaki Tanaka, Kenji Higashida, Tomotsugu Shimokawa, Tatsuya Morikawa, Brittle-Ductile Transition in Low Carbon Steel Deformed by the Accumulative Roll Bonding Process, MATERIALS TRANSACTIONS, 10.2320/matertrans.MD200817, 50, 1, 56-63, Vol.50, No.1, pp.56-63, 2009.01, [URL].
79. Yoshimasa Takahashi, Masaki Tanaka, Kenji Higashida, Hiroshi Noguchi, Effect of hydrogen on microscopic deformation process near Stage II fatigue crack tip, EFFECTS OF HYDROGEN ON MATERIALS, 203-+, 2009.01.
80. Microscopic study on the effect of hydrogen on fatigue crack growth process in a chromium-molybdenum steel.
81. Microscopic study on the effect of hydrogen on deformation process near stage II fatigue crack tip.
82. Three-Dimensional Observation of Dislocations by Electron Tomography in a Silicon Crystal (vol 49, pg 1953, 2008).
83. Masaki Tanaka, Kenji Higashida, Kenji Kaneko, Satoshi Hata, Masatoshi Mitsuhara, Crack tip dislocations revealed by electron tomography in silicon single crystal, SCRIPTA MATERIALIA, 10.1016/j.scriptamat.2008.06.042, 59, 8, 901-902, Vol.59, No.8, pp.901-904, 2008.10, [URL].
84. M. Tanaka, E. Tarleton, S. G. Roberts, The brittle-ductile transition in single-crystal iron, ACTA MATERIALIA, 10.1016/j.actamat.2008.06.025, 56, 18, 5123-5129, Vol.56, No.18, pp.5123-5129, 2008.10, [URL].
85. Masaki Tanaka, Masaki Honda, Masatoshi Mitsuhara, Satoshi Hata, Kenji Kaneko, Kenji Higashida, Three-Dimensional Observation of Dislocations by Electron Tomography in a Silicon Crystal, MATERIALS TRANSACTIONS, 10.2320/matertrans.MAW200828, 49, 9, 1953-1956, Vol.49, No.9, pp.1953-1956, 2008.09, [URL].
86. M. Tanaka, A.J. Wilkinson, S.G. Roberts, Ductile-brittle transition of poly-crystalline iron and iron-chromium alloys, J. Nucl. Mater., Vol.378, No.3, pp.305-311, 2008.09, [URL].
87. Yoshimasa Takahashi, Tanaka Masaki, Kenji Higashida, Hiroshi Noguchi, Effect of hydrogen on microscopic deformation process near stage II fatigue crack tip., Effects of Hydrogen on Materials, pp.203-210, 2008.09.
88. Masaki Tanaka, Angus J. Wilkinson, Steve G. Roberts, Ductile-brittle transition of polycrystalline iron and iron-chromium alloys, JOURNAL OF NUCLEAR MATERIALS, 10.1016/j.jnucmat.2008.06.039, 378, 3, 305-311, 2008.09.
89. Masaki Tanaka, Naoki Fujimoto, Tatsuo Yokote, Kenji Higashida, Fracture toughness enhanced by severe plastic deformation in low carbon steel, NANOMATERIALS BY SEVERE PLASTIC DEFORMATION IV, PTS 1 AND 2, 584-586, 637-642, Vol.584-586, pp.637-642, 2008.08.
90. K. Higashida, M. Tanaka, A. Hartmaier, Y. Hoshino, Analyzing crack-tip dislocations and their shielding effect on fracture toughness, Mater. Sci. Eng., A, Vol.483-484, pp.13-18, 2008.06, [URL].
91. K. Higashida, M. Tanaka, A. Hartmaier, Y. Hoshino, Analyzing crack-tip dislocations and their shielding effect on fracture toughness, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 10.1016/j.msea.2006.12.174, 483-84, 1-2 C, 13-18, 2008.06.
92. Masaki Tanaka, Naoki Fujimoto, Kenji Higashida, Fracture toughness enhanced by grain boundary shielding in submicron-grained low carbon steel, MATERIALS TRANSACTIONS, 10.2320/matertrans.ME200711, 49, 1, 58-63, Vol.49, No.1, pp.58-63, 2008.01, [URL].
93. Microscopic Approach for Fracture Toughness of Materials.
94. Masaki Tanaka, Yurni Hoshino, Alexander Hartmaier, Kenji Higashida, Crack tip dislocations and its shielding effect, PRICM 6: SIXTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-3, 561-565, PART 3, 1833-+, Vol.561-565, pp.1833-1836, 2007.12.
95. T. D. Joseph, M. Tanaka, A. J. Wilkinson, S. G. Roberts, Brittle-ductile transitions in vanadium and iron-chromium, JOURNAL OF NUCLEAR MATERIALS, 10.1016/j.jnucmat.2007.03.077, 367, SPEC. ISS., 637-643, Vol.367-370, pp.637-643, 2007.08, [URL].
96. A. Giannattasio, M. Tanaka, T. D. Joseph, S. G. Roberts, An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials, PHYSICA SCRIPTA, 10.1088/0031-8949/2007/T128/017, T128, 87-90, Vol.T128, pp.87-90, 2007.03.
97. K. Higashida, M. Tanaka, Crack Tip dislocations Observed by High-Voltage Electron-Microscopy in Single Crystal Silicon, H. Ichinose, T. Sasaki (Eds.), Proceedings of 16th International Microscopy Congress, Publication committee of IMC16, pp. 1110, 2006.08.
98. M. Tanaka, K. Higashida, H. Nakashima, H. Takagi, M. Fujiwara, Orientation dependence of fracture toughness measured by indentation methods and its relation to surface energy in single crystal silicon, INTERNATIONAL JOURNAL OF FRACTURE, 10.1007/s10704-006-0021-7, 139, 3-4, 383-394, Vol.139, No.3-4, pp.383-394, 2006.06, [URL].
99. K Higashida, M Tanaka, R Onodera, HVEM study of crack tip dislocations in silicon crystals, PRICM 5: THE FIFTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-5, 475-479, V, 4043-4046, Vol.475-479, pp.40-43, 2005.11.
100. M Tanaka, K Higashida, High-voltage electron-microscopical observation of crack-tip dislocations in silicon crystals, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 10.1016/j.msea.2005.02.084, 400, 1-2 SUPPL., 426-430, Vol.400-401, pp.426-430, 2005.07, [URL].
101. K Higashida, M Tanaka, E Matsunaga, H Hayashi, Crack tip stress fields revealed by infrared photoelasticity in silicon crystals, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 10.1016/j.msea.2004.05.058, 387, 1-2 SPEC. ISS., 377-380, Vol.387-389, pp.377-380, 2004.12, [URL].
102. M Tanaka, K Higashida, T Haraguchi, Microstructure of plastic zones around crack tips in silicon revealed by HVEM and AFM, MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 10.1016/j.msea.2004.05.040, 387, 1-2 SPEC. ISS., 433-437, Vol.387-389, pp.433-437, 2004.12, [URL].
103. M Tanaka, K Higashida, T Fukui, T Yokote, HVEM study of crack-tip dislocations in Si crystals prepared by FIB and twin-blade cutting method, JOURNAL OF ELECTRON MICROSCOPY, 10.1093/jmicro/dfh052, 53, 5, 505-509, Vol.53, No.5, pp.353-360, 2004.10, [URL].
104. , [URL].
105. M Tanaka, K Higashida, H Nakashima, H Takagi, M Fujiwara, Orientation dependence of fracture toughness and its relation to surface energy in Si crystals, JOURNAL OF THE JAPAN INSTITUTE OF METALS, 10.2320/jinstmet.68.787, 68, 9, 787-791, 2004.09.
106. M Tanaka, K Higashida, HVEM characterization of crack tip dislocations in silicon crystals, JOURNAL OF ELECTRON MICROSCOPY, 10.1093/jmicro/dfh051, 53, 4, 353-360, Vol.53, No.5, pp.505-509, 2004.08, [URL].
107. K. Higashida, M. Tanaka, 3D Structures of Crack-Tip Dislocations in Silicon Revealed by HVEM, C. Gundlach, K. Haldrup, N. Hansen, X. Huang, D.J. Jensen, T. Leffers, Z.J. Li, S.F. Nielsen, W. Pantleon, J.A. Wert, G. Winther (Eds.), Proceedings of the 25th Risoe International Symposium on Materials Science: Evolution of Deformation Microstructures in 3D, Risoe National Laboratory, Roskide, Denmark,, pp. 337-342, 2004.08.
108. K Higashida, M Tanaka, HVEM/AFM studies on crack tip plasticity in Si crystals, IUTAM SYMPOSIUM ON MESOSCOPIC DYNAMICS OF FRACTURE PROCESS AND MATERIALS STRENGTH, 115, 153-162, 153-162, 2004.07.
109. M Tanaka, K Higashida, H Nakashima, H Takagi, M Fujiwara, Fracture toughness evaluated by indentation methods and its relation to surface energy in silicon single crystals, MATERIALS TRANSACTIONS, 10.2320/matertrans.44.681, 44, 4, 681-684, Vol.44, No.4, pp.681-684, 2003.04, [URL].
110. K Higashida, N Narita, M Tanaka, T Morikawa, Y Miura, R Onodera, Crack tip dislocations in silicon characterized by high-voltage electron microscopy, PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 10.1080/01418610210141307, 82, 17-18, 3263-3273, Vol.82, No.17/18, pp.3263-3273, 2002.11, [URL].
111. Dislocation Configurations near a Crack Tip and Its Infiuence on the Fracture Toughness in Silicon Crystals
Dislocations emitted from a crack tip in silicon single crystals have been investigated using a high voltage electron microscopy (HVEM). The influence of those crack tip dislocations on the fracture toughness has been discussed based on the 3-D stress analysis of crack-dislocation interaction. Pure screw dislocations were introduced not only ahead of a crack tip but also behind the tip. The dislocations ahead of the crack tip have the sign of Burgers vectors opposite to that of the dislocations behind the tip. These configurations of crack tip dislocations are understood by dislocation loop expansion from sources near the crack tip. The contribution to the fracture toughness by those crack tip dislocations was calculated, and it was found that 70∼90% increase in the fracture toughness was caused by a dislocation configuration corresponding to that observed in the early stage of dislocation emission from a crack tip..
112. M Tanaka, K Higashida, T Kishikawa, T Morikawa, HVEM/AFM observation of hinge-type plastic zones associated with cracks in silicon crystals, MATERIALS TRANSACTIONS, 10.2320/matertrans.43.2169, 43, 9, 2169-2172, Vol.43, No.9, pp.2169-2172, 2002.09, [URL].
113. M Tanaka, T Fukui, T Yamagata, T Morikawa, K Higashida, R Onodera, TEM/AFM observation of crack tip plasticity in silicon single crystals, MATERIALS TRANSACTIONS, 10.2320/matertrans.42.1839, 42, 9, 1839-1842, Vo.42, No.9, pp.1839-1842, 2001.09, [URL].