九州大学 研究者情報
論文一覧
横田 慎吾(よこた しんご) データ更新日:2024.04.18

准教授 /  農学研究院 環境農学部門 サスティナブル資源科学


原著論文
1. Tetsuo Kondo, Gento Ishikawa, Masato Kamogawa, Yutaro Tsujita, Shingo Yokota, Tsubasa Tsuji, Satomi Tagawa, Daisuke Tatsumi, Impact-Resistant Nanocomposite Plastics Embedding “Plant Cell Walls”-Mimicked Frameworks with Ultratrace Amounts of Amphiphilic Cellulose Nanofibrils, ACS Applied Polymer Materials, 10.1021/acsapm.3c02278, 6, 2, 1276-1285, 2024.01.
2. Shingo Yokota, Airi Nishimoto, Tetsuo Kondo, Alkali-activation of cellulose nanofibrils to facilitate surface chemical modification under aqueous conditions, Journal of Wood Science, 10.1186/s10086-022-02022-9, 68, 2022.03, AbstractIn this study, we developed a surface-activation technique for cellulose nanofibrils (CNFs) using mild-alkali and aqueous conditions. CNFs were initially processed using the aqueous counter collision (ACC) method to produce Janus-type amphiphilic CNFs with both hydrophilic and hydrophobic faces on the surface of a single nanofibril (ACC-CNF). Selective functionalization of the hydroxy groups on the hydrophilic faces creates an opportunity to develop novel nano-building blocks that introduce heterogeneous and tailored surface characteristics into the design of nanomaterials. In this study, alkaline conditions were used to activate the hydroxy groups on the surface of ACC-CNFs as a pre-treatment for the partial crystalline transformation from cellulose I to cellulose II. We found that alkali treatment with sodium hydroxide (NaOH) solutions (concentration range 1–7 wt%) did not fully transform the structure of ACC-CNFs into cellulose II, nor change the morphology of nanofibrils, as seen from their wide-angle X-ray diffraction patterns and atomic force microscopy images. We also found that the hydroxy groups at the surface region of the ACC-CNFs were sufficiently reactive under the moderate alkali and aqueous conditions to undergo subsequent carboxymethylation. Therefore, alkali treatment of ACC-CNFs with a 1–7 wt% NaOH solution rendered the surface of the ACC-CNFs as sufficiently reactive for chemical modification without morphological changes. This simple method for surface activation of CNFs can be useful in the development of future sustainable and novel materials for a variety of applications..
3. Koichiro Ishida, Shingo Yokota, Tetsuo Kondo, Emulsifying Properties of α-Chitin Nanofibrils Prepared by Aqueous Counter Collision, Journal of Fiber Science and Technology, 10.2115/fiberst.2021-0022, 77, 8, 203-212, 2021.08.
4. Koichiro Ishida, Shingo Yokota, Tetsuo Kondo, Localized surface acetylation of aqueous counter collision cellulose nanofibrils using a Pickering emulsion as an interfacial reaction platform, Carbohydrate Polymers, 10.1016/j.carbpol.2021.117845, 261, 117845-117845, 2021.02, ナノサイズの繊維状物質の自己組織化は、新たな三次元材料構築に重要なアプローチである。本研究では、水中カウンターコリジョン法によって調製される両親媒性セルロースナノファイバー(CNF)について、ピッカリングエマルションの油/水界面のみで表面アセチル化を施すことにより、その表面特性を制御することも目的とした。結果として、繊維形態を維持したままで局所的な表面化学改質に成功し、得られたナノ繊維が独特の自己凝集特性を有することが示された。.
5. Wenbo Ye, Shingo Yokota, Yimin Fan, Tetsuo Kondo, A combination of aqueous counter collision and TEMPO-mediated oxidation for doubled carboxyl contents of α-chitin nanofibers, Cellulose, 10.1007/s10570-021-03676-2, 28, 4, 2167-2181, 2021.01.
6. Tsubasa Tsuji, Kunio Tsuboi, Shingo Yokota, Satomi Tagawa, Tetsuo Kondo, Characterization of an Amphiphilic Janus-Type Surface in the Cellulose Nanofibril Prepared by Aqueous Counter Collision, Biomacromolecules, 10.1021/acs.biomac.0c01464, 22, 2, 620-628, 2021.01, バイオベースの高性能ナノ繊維として知られるセルロースナノファイバーは、一般に親水性であると考えられているが、本研究では、水中カウンターコリジョン法によって調製されたセルロースナノファイバー(ACC-CNF)が疎水性と親水性面を備えた両親媒性「ヤヌス型繊維表面」を持つことを実験的かつ定量的に示した。.
7. Shingo Yokota, Satomi Tagawa, Tetsuo Kondo, Facile surface modification of amphiphilic cellulose nanofibrils prepared by aqueous counter collision, Carbohydrate Polymers, 10.1016/j.carbpol.2020.117342, 255, 117342-117342, 2021.03, 本研究は、水中カウンターコリジョン法によって調製されたセルロースナノファイバー(ACC-CNF)の表面化学修飾に関する報告である。水分散系で適度にアセチル化されたACC-CNFは、未修飾時よりも水分散性が向上しただけでなく、疎水性樹脂への吸着能や乳化特性にも向上がみられ、CNFの様々な分野での有用性がより高まったことを示した。.
8. Kohji Yamamoto, Takuya Tsubota, Tomohide Uno, Yutaro Tsujita, Shingo Yokota, Hideki Sezutsu, Kazuei Mita, A defective prostaglandin E synthase could affect egg formation in the silkworm Bombyx mori, Biochemical and Biophysical Research Communications, 10.1016/j.bbrc.2019.10.121, 521, 2, 347-352, 2020.01.
9. Shingo Yokota, Keita Kamada, Aki Sugiyama, Tetsuo Kondo, Pickering emulsion stabilization by using amphiphilic cellulose nanofibrils prepared by aqueous counter collision, Carbohydrate Polymers, 10.1016/j.carbpol.2019.115293, 226, 115293, 2019.12, 水中カウンターコリジョンによって調製されたセルロースナノファイバー(ACC-CNF)の乳化剤・乳化安定剤として特性を検討した。ACC-CNF分散水と各種非極性溶媒とを撹拌することによって、長期安定性を備えた水中油型ピッカリングエマルションが容易に得られ、他の製造法によって調製されたCNFと比較して、優位に高い乳化能力が示された。このことは、エマルション中の分散した油滴がACC-CNFで密に覆われるためであることが明らかとなった。.
10. Mayumi Hatakeyama, Daisuke Ryuno, Shingo Yokota, Hirofumi Ichinose, Takuya Kitaoka, One-step synthesis of cellooligomer-conjugated gold nanoparticles in a water-in-oil emulsion system and their application in biological sensing, Colloids and Surfaces B: Biointerfaces, 10.1016/J.colsurfb.2019.02.051, 178, 1, 74-79, 2019.06.
11. Siqi Huan, Shingo Yokota, Long Bai, Mariko Ago, Maryam Bohghei, Tetsuo Kondo, Orlando J Rojas, Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant, Biomacromolecules, 10.1021/acs.biomac.7b01452, 18, 12, 4393-4404, 2017.12.
12. Kunio Tsuboi, Shingo Yokota, Tetsuo Kondo, Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method, Nordic Pulp & Paper Research Journal, 29, 1, 69-76, 2014.02.
13. Yoshiike Y., Yokota S., Tanaka N., Kitaoka T., Wariishi H., Preparation and cell culture behavior of self-assembled monolayers composed of chitohexaose and chitosan hexamer, Carbohydrate Polymers, 82, 1, 21-27, 2010.08.
14. Yokota S., Matsuyama K., Yamamoto H., Kitaoka T., Wariishi H., Specific attraction at the carboxyl terminus of fatty acid/oxidized aluminum interface for the sizing appearance of fiber-network materials, Sen’i Gakkaishi, 65, 12, 332-337, 2009.12.
15. Yokota S., Ohta T., Kitaoka T., Wariishi H., Adsorption of cellobiose-pendant polymers to a cellulose matrix determined by quartz crystal microbalance analysis, BioResources, 4, 3, 1098-1108, 2009.08.
16. Yokota S., Ohta T., Kitaoka T., Ona T., Wariishi H., Preparation of cellobiose-conjugated polyacrylamide and its interaction with a cellulose matrix for papermaking application, Sen’i Gakkaishi, 65, 8, 212-217, 2009.08.
17. Esaki K., Yokota S., Egusa S., Okutani Y., Ogawa Y., Kitaoka T., Goto M., Wariishi H., Preparation of lactose-modified cellulose films by a nonaqueous enzymatic reaction and their biofunctional characteristics as a scaffold for cell culture, Biomacromolecules, 10, 5, 1265-1269, 2009.05.
18. Yokota S., Ohta T., Kitaoka T., Ona T., Wariishi H., Preparation and characteristics of anionic polyacrylamides containing direct dye with a high affinity for cellulose, BioResources, 4, 2, 497-508, 2009.05.
19. Egusa S., Yokota S., Tanaka K., Esaki K., Okutani Y., Ogawa Y., Kitaoka T., Goto M., Wariishi H., Surface modification of a solid-state cellulose matrix with lactose by a surfactant-enveloped enzyme in a nonaqueous medium, Journal of Materials Chemistry, 19, 13, 1836-1842, 2009.04.
20. Yokota S., Matsuo K., Kitaoka T., Wariishi H., Retention and paper-strength characteristics of anionic polyacrylamides conjugated with carbohydrate-binding modules, BioResources, 4, 1, 234-244, 2009.02.
21. Yokota S., Kitaoka T., Opietnik M., Rosenau T., Wariishi H., Synthesis of gold nanoparticles for in situ conjugation with structural carbohydrates, Angewandte Chemie International Edition, 47, 51, 9866-9869, 2008.12.
22. Yokota S., Kitaoka T., Wariishi H., Biofunctionality of self-assembled nanolayers composed of cellulosic polymers, Carbohydrate Polymers, 74, 3, 666-672, 2008.11.
23. Yokota S., Matsuo K., Kitaoka T., Wariishi H., Specific interaction acting at a cellulose-binding domain/cellulose interface for papermaking application, BioResources, 3, 4, 1030-1041, 2008.11.
24. Yokota S., Ueno T., Kitaoka T., Wariishi H., Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface, Carbohydrate Research, 342, 17, 2593-2598, 2007.12.
25. Yokota S., Ueno T., Kitaoka T., Tatsumi D., Wariishi H., Morphological imaging of single methylcellulose chains and their thermoresponsive assembly on a highly oriented pyrolytic graphite surface, Biomacromolecules, 8, 12, 3848-3852, 2007.12.
26. Yokota S., Kitaoka T., Sugiyama J., Wariishi H., Cellulose I nanolayers designed by self-assembly of its thiosemicarbazone on a gold substrate, Advanced Materials, 19, 20, 3368-3370, 2007.10.
27. Ueno T., Yokota S., Kitaoka T., Wariishi H., Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different salt conditions, Carbohydrate Research, 342, 7, 954-960, 2007.05.
28. Yokota S., Kitaoka T., Wariishi H., Surface morphology of cellulose films prepared by spin coating on silicon oxide substrates pretreated with cationic polyelectrolyte, Applied Surface Science, 253, 9, 4208-4214, 2007.02.
29. Yokota S., Matsuyama K., Kitaoka T., Wariishi H., Thermally responsive wettability of self-assembled methylcellulose nanolayers, Applied Surface Science, 253, 11, 5149-5154, 2007.03.
30. Matsuyama K., Yokota S., Kitaoka T., Wariishi H., Surface morphology and wetting characteristics of sized cellulose imitations, Sen’i Gakkaishi, 62, 4, 89-94, 2006.04.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。