九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
玉田 薫(たまだ かおる) データ更新日:2020.07.02



主な研究テーマ
科研費基盤S:局在プラズモンシートによる細胞接着ナノ界面の超解像度ライブセルイメージング
キーワード:局在プラズモン共鳴、蛍光増強、ライブセルイメージング、超解像度
2019.08~2024.03.
NEDO先導研究プログラム/新産業創出新技術先導研究プログラム/心疾患予防のための目視型プラズモンフルカラーセンサーの開発
キーワード:フルカラーセンサー、メタマテリアル
2018.07~2019.06.
最先端・次世代研究開発支援プロジェクト:プラズモニック結晶ナノアンテナ構造による革新的ナノバイオ計測
キーワード:ナノ粒子、自己組織化、ナノ光デバイス、1分子イメージング、バイオチップ
2011.02~2014.03.
二国間交流事業「溶液フロー型プラズモンナノキャビティーからのレーザー発信とバイオセンサー応用」
キーワード:半導体量子ドット、プラズモン、マイクロ流路、バイオセンサー
2015.04~2017.03.
科研費基盤A 「複雑系3次元ナノメタマテリアルの創成]
キーワード:金属微粒子、自己組織化、プラズモニクス、メタマテリアル
2014.04~2018.03.
従事しているプロジェクト研究
NEDO先導研究プログラム/新産業創出新技術先導研究プログラム/心疾患予防のための目視型プラズモンフルカラーセンサーの開発
2019.07~2019.06, 代表者:玉田 薫, 九州大学.
JSPS二国間交流事業(シンガポールとの共同研究)「溶液フロー型プラズモンナノキャビティーからのレーザー発信とバイオセンサー応用」
2015.04~2017.03, 代表者:日本側:玉田薫/シンガポール側:Chan Yin Thai, 九州大学先導物質化学研究所/シンガポール国立大学理学部, 九州大学(日本)
シンガポール国立大学(シンガポール).
科研費基盤A 「複雑系3次元ナノメタマテリアルの創成」
2014.04~2018.03, 代表者:玉田 薫, 九州大学 先導物質化学研究所.
最先端・次世代研究開発支援プログラム
2011.02~2014.03, 代表者:玉田 薫, 九州大学先導物質化学研究所, 九州大学先導物質化学研究所(日本).
研究業績
主要著書
1. 玉田薫, 先端プラズモン計測と界面反応、Current Review 04:新しい局面を迎えた界面の分子科学, 化学同人, 2011.01.
2. 玉田薫, プラズモンセンサーの現状、新材料・新素材シリーズ:フォトニックナノ構造の最近の進展, シーエムシー出版, 2011.01.
3. 玉田薫, 表面プラズモン共鳴法、第3版現代界面コロイド化学の基礎, 日本化学会編(丸善株式会社), 2009.07.
4. 玉田薫, 超分子の新しい展開とナノマテリアル(SAMバイオデバイス,超分子サイエンス&テクノロジー〜基礎からイノベーションまで〜, エヌテイーエス, 2009.07.
5. 玉田薫, SPRイメージング,ナノバイオ計測の実際, 講談社サイエンティフィック, 2007.07.
主要原著論文
1. J. Leng, Y. Xu, Y-T. Chan, P. Wang, S. Ryuzaki, K. Okamoto & K. Tamada, Tuning the Emission Colors of Self-Assembled Quantum Dot Monolayers via One-Step Heat Treatment for Display Applications, ACS Appl. Nano Mater., 10.1021/acsanm.9b02358, 3, 3214-3222, 2020.02.
2. Junfu Leng, Tian Wang, Xiaofei Zhao, Evon Woan Yuann Ong, Baisheng Zhu, Jun De Andrew Ng, Ying Chieh Wong, Khoong Hong Khoo, Kaoru Tamada, Zhi Kuang Tan, Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr3 Perovskite Nanostrips, Journal of Physical Chemistry Letters, 10.1021/acs.jpclett.9b03873, 11, 6, 2036-2043, 2020.03, [URL], Size control is critical in the synthesis of quantum-confined semiconductor nanocrystals, otherwise known as quantum dots. The achievement of size-uniformity and narrow spectral line-width in quantum dots conventionally relies on a very precise kinetic control of the reactions, where reaction time plays a significant role in defining the final crystal sizes and distribution. Here, we show that synthesis of quantum-confined perovskite nanostrips could be achieved through a thermodynamically controlled reaction, using a low-temperature and ligand-rich approach. The nanostrip growth proceeds through an initial one-dimensional (1D) nanorod stage, followed by the lateral widening of the rod to form a two-dimensional (2D) nanostrip. The spectral characteristics of the final product remain unchanged after prolonged reaction, indicating no signs of crystal ripening and confirming the thermodynamic nature of this reaction. The CsPbBr3 perovskite nanostrips were highly uniform and emit at a deep-blue wavelength of 462 nm with a remarkably narrow line-width of 13 nm. This corresponds to color coordinates of (0.136, 0.049) on the CIE 1931 color space, which fulfils the stringent Rec. 2020 standard for next-generation color displays. The well-passivated nanostrips also possess negligible defects and provide a near-unity photoluminescence quantum yield at 94%. Crucially, the achievement of blue emission through a pure-halide perovskite circumvents the problems of spectral instability that are frequently experienced in mixed-halide perovskite systems. The convenience and scalability of our thermodynamic approach, coupled with the excellent optical attributes, would likely enable these quantum-confined perovskite systems to be the preferred method toward color control in trichromatic display applications..
3. Pangpang Wang, Soh Ryuzaki, Lumei Gao, Shuhei Shinohara, Noboru Saito, Koichi Okamoto, Kaoru Tamada, Sunao Yamada, Comparison of the mechanical strength of a monolayer of silver nanoparticles both in the freestanding state and on a soft substrate, Journal of Applied Physics, 10.1063/1.5063567, 125, 13, 134301, 2019.04, [URL], A 7-nm-thick monolayer comprising myristate-capped silver nanoparticles (AgNPs) was fabricated by first drop casting an AgNP solution on the surface of a 10-100 μl water drop placed on a solid substrate. With the natural evaporation of the water, a monolayer slowly descended onto the substrate, the latter containing an array of 2.5-μm-diameter and 200-nm-deep holes, and finally formed circular freestanding monolayers in the holes. Nanoindentation measurement based on atomic force microscopy was carried out on the circular freestanding monolayer at its center, and the extending and retracting force-indentation curves were recorded to analyze further the mechanical properties of the monolayer. The force-indentation curves were evidently nonlinear, and so a two-term continuum-mechanics theory was used to interpret the results. By fitting the force-indentation curves using a two-term equation, the prestress and Young’s modulus of the freestanding AgNP monolayer were obtained as approximately 0.05 N/m and several gigapascals, respectively, which are consistent with the results reported in the literature. For comparison, we also studied the mechanical responses of AgNP monolayers and bilayers on a soft polydimethylsiloxane (PDMS) substrate by using nanoindentation. Because the AgNP monolayer was stiffer than the PDMS substrate, it was possible to measure the mechanical response of the former despite it being only 7 nm thick. The mechanical strength of the freestanding AgNP monolayers was considered to be dominated by the attractive interactions between the interdigitated hydrocarbon chains of the myristate..
4. Ayumi Ishijima, Pangpang Wang, Soh Ryuzaki, Koichi Okamoto, Kaoru Tamada, Comparison of LSPR-mediated enhanced fluorescence excited by S- and P-polarized light on a two-dimensionally assembled silver nanoparticle sheet, Applied Physics Letters, 10.1063/1.5056211, 113, 17, 171602, 2018.10, [URL], Localized surface plasmon resonance (LSPR) excited by an oblique incidence of S- and P-polarized light to a two-dimensionally assembled silver nanoparticle sheet was investigated via enhanced fluorescence under total internal reflection fluorescence (TIRF) microscopy. The finite-difference-time-domain simulation demonstrated that the S-polarized light induced a strong plasmon coupling at a nanogap between the particles, which eventually led to a highly confined, strong, and "flattened" electric field on the entire surface. In contrast, the LSPR field excited by P-polarized light was located on the individual particles, having a relatively long tail in the axial direction (low confinement). The LSPR-mediated fluorescence appeared stronger under P-polarized light than under S-polarized light in the experiments using cyanine dye solutions, while the opposite result was obtained for the fluorescence bead snapshot (diameter: 200 nm). Magnified images of the single beads taken by a super-resolution digital CMOS camera (65 nm/pixel) revealed improved lateral resolution when S-polarized light was used on both the silver nanoparticle sheet and glass under TIRF microscopy..
5. Shihomi Masuda, Salomé Mielke, Federico Amadei, Akihisa Yamamoto, Pangpang Wang, Takashi Taniguchi, Kenichi Yoshikawa, Kaoru Tamada, Motomu Tanaka, Nonlinear Viscoelasticity of Highly Ordered, Two-Dimensional Assemblies of Metal Nanoparticles Confined at the Air/Water Interface, Langmuir, 10.1021/acs.langmuir.8b02713, 34, 43, 13025-13034, 2018.10, [URL], In this study, we investigated the viscoelastic properties of metal nanoparticle monolayers at the air/water interface by dilational rheology under periodic oscillation of surface area. Au nanoparticles capped with oleylamine form a stable, dense monolayer on a Langmuir film balance. The stress response function of a nanoparticle monolayer was first analyzed using the classical Kelvin-Voigt model, yielding the spring constant and viscosity. The obtained results suggest that the monolayer of nanoparticles is predominantly elastic, forming a two-dimensional physical gel. As the global shape of the signal exhibited a clear nonlinearity, we further analyzed the data with the higher modes in the Fourier series expansion. The imaginary part of the higher mode signal was stronger than the real part, suggesting that the dissipative term mainly causes the nonlinearity. Intriguingly, the response function measured at larger strain amplitude became asymmetric, accompanied by the emergence of even modes. The significance of interactions between nanoparticles was quantitatively assessed by calculating the potential of mean force, indicating that the lateral correlation could reach up to the distance much larger than the particle diameter. The influence of surface chemical functions and core metal has also been examined by using Au nanoparticles capped with partially fluorinated alkanethiolate and Ag nanoparticles capped with myristic acid. The combination of dilational rheology and correlation analyses can help us precisely control two-dimensional colloidal assembly of metal nanoparticles with fine-adjustable localized surface plasmon resonance..
6. Mamoru Tamura, Koichi Okamoto, Kaoru Tamada, Takuya Iida, Stochastic approach to simulation of evaporation-triggered multiple self-assembly of mixed metal nanoparticles and their variable superradiance, Applied Physics Letters, 10.1063/1.5005830, 112, 3, 33106, 2018.01, [URL], We developed a design principle for the evaporation-triggered heterogeneous assembly of different kinds of metal nanoparticles in a two-dimensional environment. A dynamic Monte Carlo simulation shows the formation of island structures of gold nanoparticles (gold islands) surrounded by smaller silver nanoparticles (silver matrix) during the evaporation of organic solvent from the dispersion liquid on the water surface. Our developed principle revealed the spontaneous change in multiple interactions between gold and silver nanoparticles owing to the presence or the absence of solvation repulsion, which plays a crucial role in the formation of gold islands in the silver matrix. Not only the randomly arranged gold islands, but also the surrounding silver matrix phase contributed to the wavelength-tunable light scattering enhanced by a factor of 102 due to the superradiance effect. These results will pave the way for the design of multicolored optical devices based on random plasmonics via controlled interparticle interactions..
7. Eiji Usukura, Yuhki Yanase, Ayumi Ishijima, Thasaneeya Kuboki, Satoru Kidoaki, Koichi Okamoto, Kaoru Tamada, LSPR-mediated high axial-resolution fluorescence imaging on a silver nanoparticle sheet, PLoS One, 10.1371/journal.pone.0189708, 12, 12, 2017.12, [URL], This paper reports our original technique for visualizing cell-attached nanointerfaces with extremely high axial resolution using homogeneously excited localized surface plasmon resonance (LSPR) on self-assembled silver nanoparticle sheets. The LSPR sheet can confine and enhance the fluorescence at the nanointerface, which provides high signal-to-noise ratio images of focal adhesion at the cell-attached interface. The advantage of this LSPR-assisted technique is its usability, which provides comparable or higher-quality nanointerfacial images than TIRF microscopy, even under epifluorescence microscopy. We also report the cytotoxicity of silver nanoparticles, as determined via morphological analysis of adherent cells on the sheet..
8. S. Masuda, Y. Yanase, E. Usukura, S. Ryuzaki, K. Okamoto, KUBOKI THASANEEYA, S. Kidoaki, Kaoru Tamada, High-resolution imaging of a cell- attached nanointerface using a gold-nanoparticle two-dimensional sheet, Sci. Rep., 7, 3720, 1-10, 2017.07, This paper proposes a simple, effective, non-scanning method for the visualization of a cell-attached nanointerface. The method uses localized surface plasmon resonance (LSPR) excited homogeneously on a two-dimensional (2D) self-assembled gold-nanoparticle sheet. The LSPR of the gold-nanoparticle sheet provides high-contrast interfacial images due to the confined light within a region a few tens of nanometers from the particles and the enhancement of fluorescence. Test experiments on rat basophilic leukemia (RBL-2H3) cells with fluorescence-labeled actin filaments revealed high axial and lateral resolution even under a regular epifluorescence microscope, which produced higher quality images than those captured under a total internal reflection fluorescence (TIRF) microscope. This non-scanning-type, high-resolution imaging method will be an effective tool for monitoring interfacial phenomena that exhibit relatively rapid reaction kinetics in various cellular and molecular dynamics..
9. Z-Y. Juang, C-C Tseng, Y. Shi, W-P Hsieh, Sou Ryuzaki, N. Saito, C.-E Hsiung, Y. Hernandez, Y. Han, Kaoru Tamada, L-J L, Graphene-Au nanoparticle based vertical heterostructures: A novel route towards high-ZT Thermoelectric devices, Nano Energy, 38, 385-391, 2017.04.
10. K. Okamoto, D. Tanaka, R. Degawa, X. Li, PANGPANG WANG, Sou Ryuzaki, Kaoru Tamada, Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheets, Sci. Rep. , 6, 36165, 2016.09.
11. Ryo degawa, Pangpang Wang, Daisuke Tanaka, S. Park, N.Sakai, T. Tatsuma, Koichi Okamoto, Kaoru Tamada, Colorimetric detection of an airborne remote photocatalytic reaction using a stratified Ag nanoparticle Sheet, Langmuir, 32, 8154-8162, 2016.04.
12. Pangpang Wang, Daisuke Tanaka, Shohei Araki, K. Okamoto, Kaoru Tamada, Silver nanoparticles with tunable work functions, Applied Physics Letters, 107, 151601-1-151601-5, 2015.10.
13. Shuhei Shinohara, Daisuke Tanaka, Koichi Okamoto, Kaoru Tamada, Colorimetric plasmon sensors with multilayered metallic nanoparticle sheets, Phys. Chem. Chem. Phys., 17, 18606-18612, 2015.07.
14. Daisuke Tanaka, Keisuke Imazu, Jinwoo Sung, Cheolmin Park, K. Okamoto, Kaoru Tamada, Characteristics of localized surface plasmons excited on mixed monolayers composed of self-assembled Ag and Au nanoparticles, Nanoscale, DOI: 10.1039/c5nr03601a, 7, 15310-15320, 2015.06.
15. PANGPANG WANG, Koichi Okamoto, Kaoru Tamada, Tuning the work functions of two-dimensional silver nanoparticle sheets using local oxidation nanolithography, Adv. Mater. Interfaces, 1400268, 2014.12.
16. E. Usukura, S. Shinohara, K. Okamoto, J. Lim, K. Char, K. Tamada, Highly confined, enhanced surface fluorescence imaging with two-dimensional silver nanoparticle sheets, Applied Physics Letters, 104, 121906, 2014.03.
17. Koichi Okamoto, Brian Lin, Keisuke Imazu, Akihito Yoshida, Koji Toma, Mana Toma, Kaoru Tamada, Tuning colors of silver nanoparticle sheets by multilayered crystalline structures on metal substrates, Plasmonics, 8, 581, 2013.04.
18. Akihito Yoshida, Keisuke Imazu, Xinheng Li, Koichi Okamoto, Kaoru Tamada, Spectroscopic Properties of Multilayered Gold Nanoparticles 2D Sheets, Langmuir, 28, 17153, 2012.11.
19. Kim HW, Jung J, Han MN, Lim S, Tamada K, Hara M, Kawai M, Kim Y, Kuk Y , One-Dimensional Molecular Zippers , J. Am. Chem. Soc., 10.1021/ja2031486, 133, 24, 9236-9238, 2011.04.
20. Mana Toma, Koji Toma, Kanae Michioka, Yasuhiro Ikezoe, Daiki Obara, Koichi Okamoto and Kaoru Tamada, Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet, Phys. Chem. Chem. Phys., 10.1039/c0cp02953j, 13, 7459-7466, 2011.02.
21. Kim HW, Han, M, Shin HJ, Lim S , Oh Y, Tamada K , Hara M , Kim Y, Kawai M, Kuk Y, Control of Molecular Rotors by Selection of Anchoring Sites , Phys. Rev. Lett., 10.1103/PhysRevLett.106.146101, 106, 14, 146101, 2011.01.
22. Satoshi Katano, Koji Toma, Mana Toma, Kaoru Tamada and Yoichi Uehara, Nanoscale coupling of photons to vibrational excitation of Ag nanoparticle 2D array studied by scanning tunneling microscope light emission spectroscopy, Phys. Chem. Chem. Phys., 10.1039/c0cp01005g, 12, 44, 14749-14753, 2010.08.
23. T. Nagahiro, K. Ishibashi, Y. Kimura, M. Niwano, T. Hayashi, Y. Ikezoe, M. Hara, T. Tatsuma, K. Tamada, Ag nanoparticle sheet as a marker of lateral remote photocatalytic reaction, Nanoscale, 10.1039/b9nr00240e, 2, 107-113, 2009.11.
24. T. Nagahiro, H. Akiyama, M. Hara, K. Tamada, Photoisomerization of azobenzene containing self-assembled monolayers investigated by Kelvin probe work function measurements, J. Electron Spectroscopy and Related Phenomena, 172, 1-3, 128-133, 2009.07.
25. C.-D. Keum, N. Ishii, K. Michioka, K. Tamada, M. Hara, M. Furusawa, H. Fukushima, A Gram Scale Synthesis of Monodispersed Silver Nanoparticles Capped by Carboxylate and Their Ligand Exchange, J. Nonlinear Optical Physics & Materials, 17, 131-142, 2008.07.
26. Ito M, Nakamura F, Baba A, Tamada K, Ushijima H, Lau KHA , Manna A, Knoll W, Enhancement of surface plasmon resonance signals by gold nanoparticles on high-density DNA microarrays, J. Phys. Chem. C, 111, 31, 11653-11662, 2007.07.
主要総説, 論評, 解説, 書評, 報告書等
1. 増田志穂美, 玉田薫, LSPRシートによる細胞接着ナノ界面の観察法, メディカルサイエン スダイジェスト:医療用 AI 技術の最前線 Vol.46, 52 - 55, 2020.03.
2. 玉田薫, プラズモニックナノシートの特性と蛍光増強, 化学と工業, 2014.10.
主要学会発表等
1. Kaoru Tamada, Self-Assembled Metal Nanoparticles as Metasurfaces/Metamaterials, ICMAT2019, 2019.06.
2. Kaoru Tamada, Nano-Plasmonic Metamaterials Composed of Self-Assembled Metal Nanoparticles and Their Bio-Application, 2018 MRS Fall meeting, 2018.11.
3. 玉田 薫, プラズモニクスによる光の超微小信号計測, 日本工学アカデミー講演会「次世代マテリアルシステム」, 2018.11.
4. Kaoru Tamada, LSPR-mediated high axial and temporal resolution fluorescence imaging on metal nanoparticle sheet, 11th International Symposium on Modern Optics and its Applications (ISMOA 2017, 2017.08.
5. 玉田 薫, 金属ナノ微粒子の自己組織化とデバイス応用, 第77回応用物理学会秋季学術講演会シンポジウム, 2016.09.
6. Kaoru Tamada, Electromagnetically induced transparency of a plasmonic metamaterial light absorber based on multilayered metallic nanoparticle sheet, ICFPAM2016, 2016.11.
7. 玉田 薫, ナノフルイド:ナノ粒子構造体形成とその応用, 化学工学会 第81年会, 2016.03.
8. Kaoru Tamada, Dimensional Optical Property of Self-assembled Metallic Nanoparticles, Pacifichem2015, 2015.12.
9. Kaoru Tamada, Shihomi Masuda, Ayumi Ishijima, Eiji Usukura, Koichi Okamoto, Self-assembled Metallic Nanoparticles for Bioimaging, KJF-ICOMEP2015, 2015.09.
10. Kaoru Tamada, Eiji Usukura, Shihomi Masuda, Koichi Okamoto, Daisuke Tanaka, Yuhki Yanase, High Contrast and High Resolution Cell Imaging by use of Metallic Nanoparticle 2D sheet, ICMAT 2015 & IUMRS-ICA 2015, 2015.07.
11. Kaoru Tamada, Plasmonic Property of Multidimensional Self-assembled Metallic Nanoparticles, 第17回 微粒子と無機クラスターに関する国際シンポジウム(ISSPIC XVII), 2014.09.
12. Kaoru Tamada, Dimensional Optical Property of Self-assembled Metallic Nanoparticles, The 15th IUMRS-International Conference in Asia (IUMRS-ICA 2014), 2014.08.
特許出願・取得
特許出願件数  1件
特許登録件数  15件
その他の優れた研究業績
2019.10, 「局在プラズモンシートによる細胞接着ナノ界面の超解像度ライブセルイメージング」.
学会活動
所属学会名
シンガポール材料学会
アメリカ化学会
日本化学会
日本表面真空学会
応用物理学会
学協会役員等への就任
2018.04~2022.03, 日本表面真空学会, 理事.
2016.04~2018.03, 日本表面科学会, 九州支部長.
2014.04~2017.03, 日本表面科学会ソフトナノテクノロジー部会, 会長.
2014.04~2020.03, 日本表面科学会, 理事.
2013.04~2015.03, 応用物理学会, 理事.
2012.04~2013.03, 日本表面科学会, 評議員.
2011.04~2013.03, 応用物理学会有機分子バイオエレクトロニクス分科会, 会長.
2008.04~2011.03, 応用物理学会有機分子バイオエレクトロニクス分科会, 副会長.
2011.04~2013.03, 応用物理学会有機分子バイオエレクトロニクス分科会, 会長.
2010.06~2012.05, 日本表面科学会, 評議員.
2006.06~2010.05, 日本表面科学会, 理事.
学会大会・会議・シンポジウム等における役割
2020.12.15~2020.12.20, Pacifichem2020, Session organizer.
2019.10.19~2018.10.19, 2019年日本表面真空学会第2回ダイバーシティシンポジウム, オーガナイザー.
2019.06.24~2019.06.28, ICMAT2019, オーガナイザー.
2018.11.19~2018.11.21, 2018年日本表面真空学会ダイバーシティキックオフシンポジウム, オーガナイザー.
2017.09.05~2017.09.05, 第78回応用物理学会秋季学術講演会シンポジウム「最新動向:生体材料と先端デバイスを繋ぐ学術的アプローチ」, オーガナイザー.
2016.09.04~2016.09.07, KJF2016国際会議, 組織・実行委員長.
2014.11.22~2014.11.25, 8th International Conference on Energy-Materials-Nanotechnology, Session organizer.
2014.11.22~2015.11.25, 8th International conference on Energy-Materials-Nanotechnology, 座長(Chairmanship).
2014.11.03~2015.11.07, ISSS7国際会議, 現地実行委員.
2014.11.03~2011.11.06, 7th International Symposium on Surface Science (ISSS7), 座長(Chairmanship).
2014.09.19~2015.05.27, 第75回応用物理学会秋季学術講演会, 座長(Chairmanship).
2013.11.26~2013.11.26, 第33 回表面科学学術講演会 ソフトナノテクノロジー研究部会セッション, 企画代表.
2013.11.04~2013.11.07, ACSIN-12国際会議, プログラム委員.
2013.03.17~2013.03.19, M&BE7国際会議, 組織・実行委員長.
2013.03.17~2013.03.19, Seventh International Conference on Molecular Electronics and Bioelectronics (M&BE7), 座長(Chairmanship).
2012.09.06~2012.09.08, ICFPE国際会議, 実行委員.
2012.09.06~2012.09.08, International Conference on Flexible and Printed Electronics(ICFPE 2012), 座長(Chairmanship).
2012.05.13~2012.05.18, IACIS2012, 実行委員.
2012.03.15~2012.03.15, 有機分子・バイオエレクトロニクス分科会企画「最先端バイオイメージング」 応用物理学会, 企画代表.
2012.03.15~2012.03.15, 応用物理学会有機分子バイオエレクトロニクス分科会企画シンポジウム, 座長(Chairmanship).
2011.11.11~2011.11.15, ISSS6国際会議, プログラム副委員長.
2011.11.11~2011.11.11, International Symposium on Surface Science –Towards Nano-, Bio-, and Green Innovation – (ISSS6), 座長(Chairmanship).
2011.09.15~2011.09.15, KJF International Conference on Organic Materials for Electronics and Photonics 2011(KJF-ICOMEP2011), 座長(Chairmanship).
2011.03.16~2011.03.18, MBE6国際会議, 実行委員長.
2010.11.01~2010.11.03, Asianano2010, プログラム委員.
2010.09.19~2010.09.22, NCSS2010, プログラム委員.
2010.08.17~2010.08.20, IEEENano2010, プログラム委員.
2006.04.01~2009.03.31, 応用物理学会, プログラム編集委員.
学会誌・雑誌・著書の編集への参加状況
2018.06~2023.06, ACS Appliee Nanomaterials, 国際, 編集委員.
2013.04~2015.03, 応用物理学会誌/応用物理, 国内, 編集委員長.
2004.04~2006.03, 応用物理学会 学会誌 , 国内, 編集委員.
2005.06~2008.05, 日本表面科学会, 国内, 編集委員.
2008.04~2011.03, 応用物理学会有機分子・バイオエレクトロニクス分科会会誌, 国内, 編集委員長.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2020年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
カリフォルニア大学サンジエゴ校, カリフォルニア大学バークレー校, スタンフォード大学, シンガポール国立大学, UnitedStatesofAmerica, Singapore, 2018.04~2019.03.
シンガポール大学, Singapore, 2006.10~2009.12.
外国人研究者等の受入れ状況
2020.02~2020.02, 2週間未満, Arizona State University, UnitedStatesofAmerica.
2020.01~2020.01, 2週間未満, シンガポール国立大学, Singapore, 科学技術振興事業団.
2018.08~2018.08, 2週間未満, National Taiwan Normal University, Taiwan, 学内資金.
2019.11~2019.11, 2週間未満, National Taiwan Normal University, Taiwan, 学内資金.
2019.11~2019.11, National Taiwan Normal University, Taiwan.
2020.02~2021.03, 1ヶ月以上, 九州大学先導物質化学研究所, Malaysia, 日本学術振興会.
2018.09~2019.06, 九州大学先導物質化学研究所, Bangladesh.
2016.09~2016.11, 1ヶ月以上, バンドン工科大学, Indonesia, 民間・財団.
2015.05~2015.05, 2週間以上1ヶ月未満, シンガポール材料研究所(IMRE), China, 日本学術振興会.
2015.05~2015.05, 2週間未満, シンガポール国立大学, Singapore.
2015.04~2015.04, 2週間未満, シンガポール国立大学, Singapore, 学内資金.
2014.11~2015.11, 2週間未満, UC Irvine, UnitedStatesofAmerica.
2014.03~2014.03, 2週間未満, 延世大学(韓国), Korea, 学内資金.
2012.06~2012.06, 2週間未満, シンガポール国立大学, Singapore, 学内資金.
2012.06~2012.06, 2週間未満, シンガポール国立大学, Singapore.
2012.06~2012.06, 2週間未満, シンガポール国立大学, Netherlands.
2012.06~2012.06, 2週間未満, シンガポール国立大学, Singapore.
2012.06~2012.06, 2週間未満, シンガポール国立大学, Singapore, 学内資金.
2012.06~2012.06, 2週間未満, シンガポール国立大学, Singapore, 学内資金.
2012.05~2012.05, 台湾科学技術院(台湾国立大学), Taiwan, 学内資金.
2012.04~2012.04, 2週間未満, シンガポール国立大学, China, 学内資金.
2012.02~2012.02, 2週間以上1ヶ月未満, シンガポール国立大学, China, 学内資金.
2012.02~2012.02, 2週間未満, シンガポール国立大学, Singapore.
2012.01~2012.01, 2週間以上1ヶ月未満, シンガポール国立大学, China, 学内資金.
2011.11~2013.07, 1ヶ月以上, 九州大学先導物質化学研究所, China.
2011.09~2011.12, 1ヶ月以上, バンドン工科大学, Indonesia.
2011.03~2012.03, 1ヶ月以上, 九州大学先導物質化学研究所, China.
受賞
日本表面科学会 学会賞, 日本表面科学会, 2018.05.
応用物理学会フェロー, 応用物理学会, 2016.09.
日本表面科学会 第4回フェロー表彰, 公益社団法人 日本表面科学会, 2013.05.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2019年度~2023年度, 基盤研究(S), 代表, 局在プラズモンシートによる細胞接着ナノ界面の超解像度ライブセルイメージング.
2013年度~2017年度, 基盤研究(A), 代表, 雑系3次元ナノメタマテリアルの創成.
2009年度~2010年度, 基盤研究(B), 代表, プラズモニックナノシート:ナノ近接場界面の創出と応用探索.
日本学術振興会への採択状況(科学研究費補助金以外)
2010年度~2013年度, 最先端・次世代研究開発支援プログラム, 代表, プラズモニック結晶ナノアンテナ構造による革新的ナノバイオ計測.
競争的資金(受託研究を含む)の採択状況
2018年度~2019年度, 産業技術研究助成事業 (経済産業省), 代表, 心疾患予防のための目視型プラズモンフルカラーセンサーの開発.
2010年度~2011年度, 科学技術振興調整費 (文部科学省), 代表, トップダウン/ボトムアップ融合による次世代プラズモンセンサの開発.
共同研究、受託研究(競争的資金を除く)の受入状況
2014.07~2014.10, 代表, 金属微粒子によるフルカラーコーテイングに関する研究.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」