九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
藤川 茂紀(ふじかわ しげのり) データ更新日:2023.06.20



主な研究テーマ
大気からの直接的CO2回収を実現する分離ナノ膜の創製
キーワード:CO2回収, 分離膜, ナノ膜, 大気CO2の直接回収
2018.06~2029.04.
新奇機能を発現するデザインされた機能性ナノ構造界面の創製
キーワード:ナノ構造, 界面, 表面, 表面ナノ構造, 集積構造
2011.10~2029.03.
高性能物質分離を実現する自己支持性ナノ膜の創製
キーワード:ナノ膜, 自己支持性, 物質分離, ガス分離
2011.10~2029.03.
従事しているプロジェクト研究
高分子分離膜界面デザインによる革新的CO2分離ナノ膜の創製
2020.04~2023.03, 代表者:藤川茂紀, 九州大学, 日本学術振興会(科学研究費補助金 基盤研究(B))
地球温暖化抑制技術の一つとして、膜分離によるCO2回収が有望視されている。しかしながら既存のCO2分離膜は透過性能が低い。従って分離膜のCO2透過性向上が喫緊の課題となっており、分離膜の薄膜化はその有効な手段の一つである。本研究では、高いCO2透過性を有する自立ナノ膜(膜厚:100nm以下)の表面にCO2親和性を持つ分子層を導入し、高い透過性と選択性を持つCO2分離膜の創製を目的とする。本研究により、ナノ分離膜の選択・透過性が分離表面で決定されることが実証されれば、CO2分離膜の透過性能向上というだけでなく、分離膜一般に関して展開可能であり、大きな波及効果が期待される。.
光エネルギーの高度活用に向けた分子システム化技術の開発
2020.10~2024.03, 代表者:君塚信夫, 九州大学, 日本学術振興会(科学研究費補助金 基盤研究(S))
本研究は分子組織化を基盤とする光エネルギーの高度活用に資する学術「分子システム化学」の創成をはかることを目的とする。具体的には、NIR→Vis領域における高効率のフォトン・アップコンバージョン(UC)を分子の自己組織化に基づき実現するための方法論、ナノギャップ・プラズモニクスと自己組織化UCの融合により、低強度の励起光を増強してTTA-UCを起こす技術の開発を行う。さらに、分子組織化の概念をシングレット・フィッション(SF)分野に展開し、キラルな分子組織化に基づく高効率のSFシステムを開発する。.
ビヨンド・ゼロ”社会実現に向けたCO2循環システムの研究開発
2020.06~2029.03, 代表者:藤川茂紀, 九州大学 カーボンニュートラル・エネルギー国際研究所, 内閣府(国立研究開発法人新エネルギー・産業技術総合開発機構)

大気中のCO2濃度を低下させ、地球温暖化を抑止することは、人類共通課題である。本プロジェクトでは、大気中の希薄なCO2を膜で回収し、それをオンサイトで資源化する、分散配置型のCO2循環システムを開発する。これによって、地球温暖化の主たる原因であるCO2削減と炭素資源循環を実現する。
具体的には、独自ナノ膜技術によって開発された、桁違いのCO2透過性を有する革新的な分離ナノ膜を出発点とし、選択性が向上したCO2分離ナノ膜からなるCO2回収ユニットと、回収したCO2を炭素燃料に高効率で変換するユニットを開発する。この二つのユニットを自在に連結し、大気からのCO2回収から炭素燃料変換までを一貫して行う「Direct Air Capture and Utilization (DAC-U)システム」を創製する。またこのシステムに、相互連結による高い拡張性を持たせる。これにより、太陽光発電システムと同様に、導入スペース、用途、条件に合わせて、家庭用の小規模からビル等の中規模まで対応するサイズスケーラブルなオンサイトシステムとなる。この革新的なDAC-Uシステムによって、地上に遍く存在する大気から、場所に依存することなく、どこでも(ユビキタス)CO2の回収とその資源化を図り、気候変動問題の解決だけでなく、炭素資源の地産地消並びに資源循環によるエネルギーロバスト(robust, 堅牢)な社会構築を実現する。
.
世界トップレベル研究拠点プログラム(WPI)
2010.10~2020.03, 代表者:Petros Sofronis, 九州大学, 独立行政法人日本学術振興会
カーボンニュートラル・エネルギー社会実現への道筋
CO2の排出を減らすとともに、非化石燃料によるエネルギーシステムを構築するための基礎科学を創出することによって、環境調和型で持続可能な社会の実現に貢献。.
分子の自己組織化に基づくナノ界面アシンメトリー化学
2016.10~2021.02, 代表者:君塚信夫, 九州大学, 新学術領域研究「配位アシンメトリ」
金属錯体の配位圏の分子レベル制御に基づき、金属錯体およびそのナノ〜マイクロレベルの集積化により得られる集積型錯体や配位空間において、構造や電子状態の非対称性・キラリティーを構築する方法論を開拓することにより、新しい学理「配位アシンメトリー」の創出を目的とする.
世界トップレベル研究者招へいプログラム
2015.04~2016.03, 代表者:藤川茂紀, 九州大学, 九州大学(日本)
 テキサス大学オースティン校 Benny Freeman教授の招へいを軸に,本学との共同研究を加速推進させる.国際共同研究を通じて学生の研究指導を行う.膜による気体分離に関する実験・解析的研究を共同で実施する.具体的には,Freeman教授に1ヶ月単位で,H27年度までに通算3ヶ月間当研究室に滞在し,現在当該研究をテーマとしている学生の研究を指導する.また,I2CNER所属のポスドクの研究指導も行う.
金ナノフィンアレイによる近赤外光捕集ナノ界面の大面積創製
2014.04~2017.03, 代表者:藤川茂紀, 九州大学, 文部科学省(日本)
貴金属からなるナノ構造体はそのユニットサイズや配置によって、光と相互作用し、特異な光学応答を示す。バイオセンシングや太陽光発電における光の有効活用といった観点から、近年は近赤外領域の光の活用が重要となっている。そこで本申請では、ナノフィンをユニットとする周期的金属ナノ構造を構築し、チューナブルかつ選択的に”近赤外領域の光(近赤外光)を捕集するナノ界面の大面積創製”ならびに”捕集光のエネルギー変換”の構築を目指す。これらの知見を、界
面の設計がイノベーションの鍵を握る太陽電池、光学素子、センシングシステムに結び付ける.
ナノ積層法による燃料電池・水電解セル開発
2013.10~2018.09, 代表者:藤ヶ谷 剛彦, 九州大学, JST-ALCA(日本)
独自に開発した電極触媒作製手法である「ナノ積層法」を展開し、高性能燃料電池および水電解システムを開発します。「ナノ積層法」とはナノカーボン担体の表面に数ナノメートル厚で塗布した「のり」の役割をする樹脂を介してイオン伝導体や金属ナノ粒子を「貼り付ける」技術です。本技術が可能にする電極触媒精密デザインを次世代燃料電池・水電解セルの「高活性化」「長寿命化」「低コスト化」に最大限活用し実用化を加速します。.
共振型3次元メタマテリアルの作製と機能評価
2010.10~2015.09, 代表者:田中拓男, 理化学研究所, 文部科学書(日本)
本研究では、研究代表者である田中が持つ、可視光領域で動作するメタマテリアルの構造設計、トップダウン的レーザー加工法、光学特性評価法、応用デバイスなどに関する研究成果の知識と経験を基礎として、さらにボトムアップ型加工技術を専門とする研究分担者を加えることで、可視域で動作する3次元メタマテリアルをmm~cm角サイズで実現することを目指す。
メタマテリアルはナノメートルスケールの金属共振器の3次元集合体であり、これを加工するには、高いQ値を稼ぐための高精度な金属構造を膨大な数集積化させなければいけないので、その実現にはトップダウン的な加工技術とボトムアップ的な技術を密に融合させることが必須である。田中が開発したメタマテリアルの構造設計プロトコルを元に、ボトムアップアップ手法が潜在的に持つ構造の揺らぎを意識して、これを許容しながら高いQ値を得るための最適な構造を探る。さらに田中は、自身が開発した2光子還元法の高速化と量産化を進め、3次元金属ナノ共振器構造の基本形成技術を確立する。彌田はdi-block-copolymerの自己組織化ナノ構造や生物がもつマイクロ/ナノ構造をテンプレートに用いたメタマテリアルの構造形成法を研究する。藤川は自身が開発したナノコーティングリソグラフィー法をメタマテリアルの加工に展開し、共振器を高精度に保持・集積化させるための大面積ホスト構造の開発を行う。これらと平行して,田中のグループでは,化学的に合成した金属ナノ粒子を液体界面に分散させ、それらを配列・集積化させるための手法の開発にも着手する。これら各分担者自身の研究の推進と平行して,互いに密接に連携しながらそれぞれの方法の融合を図り,さらに、他の計画研究で開発される手法も取り入れて、未だ実現されていないmm~cmオーダーの3次元光メタマテリアルを実現する。以上の3次元光メタマテリアル作製技術の展開をベースに他研究計画と協力して新機能メタマテリアル創出を目指す。.
次元制御されたナノ空間体と不均一系集積型遷移金属ナノ触媒に融合した先導的π電子物質創製触媒システムの創出
2012.10~2018.03, 代表者:山田陽一, 理化学研究所, JST ACT-C (日本)
本研究の目的は、低エネルギー・低環境負荷で持続可能な物質変換のために、「ppm-ppbレベルの触媒量で標的有機化合物を合成し、触媒が再利用できる、先導的不溶性金属触媒システム群の開発」です。「グリーンイノベーション」「新規触媒反応を用いた環境負荷の低い基礎化成品の製造プロセスの実現」を達成ビジョンとし、「化学合成及びデバイスに繋がる新機能創製手法の創出」を達成目標とします。
遷移金属触媒の化学構造制御に加えて触媒反応空間の次元制御を行い、「高活性・高再利用な不溶性触媒型合成システム」、「マイクロ流路内異相界面への自立触媒膜の形成とそれを活用した瞬間的反応」、「ナノ剣山間隙を3次元ナノ反応空間として活用した瞬間的・高活性触媒による合成システム」によって超高速・選択的有機変換反応を実現する先導的炭素物質変換触媒システムの創製を目指します。.
自己組織化に基づくナノインターフェースの統合構築技術
2007.10~2013.02, 代表者:君塚信夫, 九州大学, JST CREST(日本)
金属イオンや金属錯体の自己組織化プロセスを利用して、新しいナノ界面構造(0次元、1次元、2次元、3次元)を自在に構築し、その界面の構造的特徴を最大限に活かした新機能の創製に結びつける「新しいナノ界面構造ならびに電子機能の統合制御基盤技術」を開発します。その応用分野として、分子メモリ、強誘電性ナノ薄膜やセンサー、医療ナノ材料などを含む革新的な自己組織性ナノマテリアル化学への展開を目指します。.
研究業績
主要著書
主要原著論文
1. Fujikawa, Shigenori; Selyanchyn, Roman; Kunitake, Toyoki, A new strategy for membrane-​based direct air capture, Polymer Journal, DOI:10.1038/s41428-020-00429-z, 53, 1, 111-119, 2021.06, A review. Direct CO2 capture from the air, so-​called direct air capture (DAC)​, has become inevitable to reduce the concn. of CO2 in the atm. Current DAC technologies consider only sorbent-​based systems. Recently, there were reports that show ultrahigh CO2 permeances in gas sepn. membranes and thus membrane sepn. could be a potential new technol. for DAC in addn. to sorbent-​based CO2 capture. The simulation of chem. processes was well established and is commonly used for the development and performance assessment of industrial chem. processes. These simulations offer a credible assessment of the feasibility of membrane-​based DAC (m-​DAC)​. In this paper, we discuss the potential of m-​DAC considering the state-​of-​the-​art performance of org. polymer membranes. The multistage membrane sepn. process was employed in process simulation to est. the energy requirements for m-​DAC. Based on the anal., we propose the target membrane sepn. performance required for m-​DAC with competitive energy expenses. Finally, we discuss the direction of future membrane development for DAC..
2. Selyanchyn Olena, Selyanchyn Roman, Fujikawa, Shigenori, Critical Role of the Molecular Interface in Double-​Layered Pebax-​1657​/PDMS Nanomembranes for Highly Efficient CO2​/N2 Gas Separation, ACS Applied Materials & Interfaces, 10.1021/acsami.0c07344, 12, 29, 33196-33209, 2020.06, [URL], In this work, we deposited a CO2-​selective block copolymer, Pebax-​1657, as a selective layer with a thickness of 2-​20 nm on the oxygen plasma-​activated surface of poly(dimethylsiloxane) (PDMS) used as a gutter layer (thickness ~ 400 nm)​. This double-​layered structure was subsequently transferred onto the polyacrylonitrile (PAN) microporous support and studied for CO2/N2 sepn. The effect of interfacial mol. arrangements between the selective and gutter layers on CO2 permeance and selectivity has been investigated. We have revealed that the gas permeance and selectivity do not follow the conventional theor. predictions for the multilayer membrane (resistance in series transport model)​; specifically, more selective CO2/N2 sepn. membranes were achieved with ultrathin selective layers. Detailed characterization of the chem. structure of the outermost membrane surface suggests that nanoscale blending of the ultrathin Pebax-​1657 layer with O2 plasma-​activated PDMS chains on the surface takes place. This nanoblending at the interface between the selective and gutter layers played a crit. role in enhancing the CO2/N2 selectivity. CO2 permeance in the developed thin-​film composite membranes (TFCM) were between 1200 and 3500 gas permeance units (GPU) and the resp. CO2/N2 selectivities were between 72 and 23, providing the gas sepn. performance suitable for CO2 capture in postcombustion processes. This interpenetrating polymer interface enhanced the overall selectivity of the membrane significantly, exceeding the sepn. ability of the pristine Pebax-​1657 polymer..
3. Saravanan, Prabakaran; Selyanchyn, Roman; Tanaka, Hiroyoshi; Fujikawa, Shigenori; Lyth, Stephen Matthew; Sugimura, Joichi., The effect of oxygen on the tribology of (PEI/GO)15 multilayer solid lubricant coatings on steel substrates, Wear, 10.1016/j.wear.2019.05.035, 432-433, 102920/1-102920/7, 2019.06.
4. Selyanchyn, Roman; Fujikawa, Shigenori; Katsuta, Naohiro; Suwa, Kazuya; Kunitake, Masashi., Study of gases permeation in necklace-shaped dimethylsiloxane polymers bearing POSS cages, Membranes, 10.3390/membranes9040054, 9, 4, 54-66, 2019.04.
5. Selyanchyn, Roman; Fujikawa, Shigenori, Molecular Hybridization of Polydimethylsiloxane with Zirconia for Highly Gas Permeable Membranes, ACS Appl. Polym. Mater., 10.1021/acsapm.9b00178, 1, 5, 1165-1174, 2019.04.
6. Ishizu, Masaki; Aizawa, Miho; Akamatsu, Norihisa; Hisano, Kyohei; Fujikawa, Shigenori; Barrett, Christopher J.; Shishido, Atsushi, Effect of surface treatment on molecular alignment behavior by scanning wave photopolymerization, Appl. Phys. Express, 10.7567/1882-0786/ab040d, 12, 4, 041004/1-041004/5, 2019.03.
7. Mersha, Anteneh; Fujikawa, Shigenori, Mechanical Reinforcement of Free-Standing Polymeric Nanomembranes via Aluminosilicate Nanotube Scaffolding, ACS Appl. Polym. Mater., 10.1021/acsapm.8b00104, 1, 2, 112-117, 2019.01.
8. Prabakaran Saravanan, Roman Selyanchyn, Motonori Watanabe, Shigenori Fujikawa, Hiroyoshi Tanaka, Stephen Matthew Lyth, Joichi Sugimura, Ultra-low friction of polyethylenimine / molybdenum disulfide (PEI/MoS2)15 thin films in dry nitrogen atmosphere and the effect of heat treatment, Tribology International, 10.1016/j.triboint.2018.06.003, 127, 255-263, 2018.11, [URL], The unique frictional behavior of polyethylenimine/molybdenum disulphide (PEI/MoS2)n thin films on steel substrates, deposited via the layer-by-layer (LbL) technique, is explored. The effects of gaseous atmosphere (i.e. air vs. dry nitrogen), and heat treatment of the coatings are investigated. The coefficients of friction (COFs) are reduced by factors of ca. 2 and 11 in air and N2 respectively, compared to an uncoated steel substrate. Ultra-low friction (COF 2. After heat treatment of the coating at 500 °C, the COF in air and nitrogen does not change significantly, but the coating demonstrates much higher durability. Detailed characterization of the coating and wear debris are performed to understand the origin of these tribological properties..
9. Shiyan Feng, Shoichi Kondo, Takahiro Kaseyama, Taichi Nakazawa, Takamasa Kikuchi, Roman Selyanchyn, Shigenori Fujikawa, Liana Christiani, Kazunari Sasaki, Masamichi Nishihara, Characterization of polymer-polymer type charge-transfer (CT) blend membranes for fuel cell application, Data in Brief, 10.1016/j.dib.2018.02.031, 18, 22-29, 2018.06, [URL], The data presented in this article are related to polymer-polymer type charge-transfer blend membranes for fuel cell application. The visible spectra of the charge-transfer (CT) blend membranes indicated formation of CT complex in the blend membranes, and behavior of CT complex formation by polymers was clarified by Job plot of the visible spectra. The effect of fluorine for membrane property and fuel cell performance of CT blend membranes were evaluated by 19F NMR and overvoltage analysis, respectively..
10. Akamatsu, Norihisa; Fukuhara, Motoyuki; Fujikawa, Shigenori; Shishido, Atsushi., Effect of hardness on surface strain of PDMS films detected by a surface labeled grating method, J. Photopolym. Sci. Technol., 10.2494/photopolymer.31.523, 31, 4, 523-526, 2018.06.
11. Shiyan Feng, Shoichi Kondo, Takahiro Kaseyama, Taichi Nakazawa, Takamasa Kikuchi, Roman Selyanchyn, Shigenori Fujikawa, Liana Christiani, Kazunari Sasaki, Masamichi Nishihara, Development of polymer-polymer type charge-transfer blend membranes for fuel cell application, Journal of Membrane Science, 10.1016/j.memsci.2017.11.025, 548, 223-231, 2018.02, [URL], We have prepared new charge-transfer (CT) complex polymer blend membranes (CT membranes), for use as high performance polymer electrolyte membranes (PEMs); with a simple and easy preparation method for application in PEFCs. In this study, electron-accepting sulfonated polyimide (SPI) and electron-donating polyether (PE), were used to develop polymer-polymer type CT membranes. The formation of CT complex in the obtained SPI/PE membranes was confirmed by visible spectroscopy. The use of flexible spacers in the PE and heat treatment of the CT membranes, enhanced the CT complex formation. SPI/PE CT membranes showed 1.9–2.2 times higher mechanical strength than the original SPI, while SPI/PE 0.33 CT membrane with heat treatment at 130 °C for 2 h showed 4.3 times higher mechanical strength than the original SPI. Hydrogen permeability through SPI/PE CT membranes was 4.1–5.4 times lower than Nafion 212 and 1.4–1.9 times lower than the original SPI membrane. We have prepared a thin SPI/PE CT membrane (10 µm thickness), that showed comparable OCV (0.88 V), similar resistance compared to Nafion 212 and demonstrated more than 10 h of durability in a fuel cell test; suggesting that SPI/PE thin CT membrane can be applied for PEFC application..
12. Norihisa Akamatsu, Motoyuki Fukuhara, Shigenori Fujikawa, Atsushi Shishido, Effect of hardness on surface strain of PDMS films detected by a surface labeled grating method, Journal of Photopolymer Science and Technology, 10.2494/photopolymer.31.523, 31, 4, 523-526, 2018.01, [URL], In recent years, mechanical properties of flexible materials have attracted much attention for the development of stretchable electronic devices, flexible sensors and wearable biointegrated devices that would support the future ‘Internet of things’ (IoT) and ‘information technology’ (IT). For designing advanced soft devices, there is a strong demand to quantitatively analyze the deformation behavior of soft materials. Recently, a surface labeled grating method has been developed as a new tool to quantitatively measure the bending behavior of flexible films. In this study, we investigated the effect of hardness of the film to be measured on the surface strain evaluated by this method..
13. Yoshiaki Shoji, Minsu Hwang, Haruka Sugiyama, Fumitaka Ishiwari, Kumiko Takenouchi, Ryota Osuga, Junko N. Kondo, Shigenori Fujikawa, Takanori Fukushima, Highly efficient transformation of linear poly(phenylene ethynylene)s into zigzag-shaped π-conjugated microporous polymers through boron-mediated alkyne benzannulation, Materials Chemistry Frontiers, 10.1039/c7qm00582b, 2, 4, 807-814, 2018.01, [URL], Porous polymers offer great advantages compared to other microporous materials in terms of solubility and processability. However, the design of porous polymers has suffered from the limited availability of suitable building blocks. Here we propose a conceptually new strategy for the design of porous polymers, which involves the transformation of a rigid linear polymer into a rigid zigzag polymer with a large free volume around the polymer backbone. This strategy relies on a boron-mediated alkyne benzannulation reaction, which was recently developed by our group. When the benzannulation reaction was applied to poly(phenylene ethynylene) (PPE) derivatives, a linear-to-zigzag structural transformation successfully occurred to give the corresponding p-conjugated polymers with a diarylphenanthrene unit in the main chain. As revealed by N2 adsorption experiments, while the parent PPEs were non-porous, the zigzag polymers in the solid state possessed porosity with a specific surface area of up to 366 m2 g1, where the surface area largely depended on the steric bulkiness of the substituents on the polymer. Considering the fact that a wide variety of PPE derivatives have so far been synthesized, the present strategy may open a new avenue for the development of functional porous polymers..
14. Daisuke Kichise, Kazuma Mase, Shigenori Fujikawa, Nobuhiro Yanai, Nobuo Kimizuka, Specific uniaxial self-assembly of columnar perylene liquid crystals in au nanofin arrays, Chemistry Letters, 10.1246/cl.171228, 47, 3, 354-357, 2018.01, [URL], Self-assembly of liquid crystalline tetrakis(2-ethylhexyl) perylene-3,4,9,10-tetracarboxylate (C8PTC) in periodically aligned Au nanofin arrays (Au-NFs) is investigated. C8PTC forms columnar hexagonal liquid crystalline assemblies oriented parallel to the glass substrate, while the in-plane orientation of the long columnar axis is perpendicular to the surface of Au- NFs. This unique alignment reflects the interaction between the aromatic π-surface and the bare gold surface of NFs. This work provides a new perspective to design and control molecular selfassembly confined in the designed surface nanopatterns..
15. Roman Selyanchyn, Miho Ariyoshi, Shigenori Fujikawa, Thickness Effect on CO2/N2 Separation in Double Layer Pebax-1657®/PDMS Membranes, Membranes, 10.3390/membranes8040121, 8, 4, 2018.01, [URL], The effect of thickness in multilayer thin-film composite membranes on gas permeation has received little attention to date, and the gas permeances of the organic polymer membranes are believed to increase by membrane thinning. Moreover, the performance of defect-free layers with known gas permeability can be effectively described using the classical resistance in series models to predict both permeance and selectivity of the composite membrane. In this work, we have investigated the Pebax®-MH1657/PDMS double layer membrane as a selective/gutter layer combination that has the potential to achieve sufficient CO2/N2 selectivity and permeance for efficient CO2 and N2 separation. CO2 and N2 transport through membranes with different thicknesses of two layers has been investigated both experimentally and with the utilization of resistance in series models. Model prediction for permeance/selectivity corresponded perfectly with experimental data for the thicker membranes. Surprisingly, a significant decrease from model predictions was observed when the thickness of the polydimethylsiloxane (PDMS) (gutter layer) became relatively small (below 2 µm thickness). Material properties changed at low thicknesses-surface treatments and influence of porous support are discussed as possible reasons for observed deviations..
16. Roman Selyanchyn, Shigenori Fujikawa, Membrane thinning for efficient CO2 capture, Science and Technology of Advanced Materials, 10.1080/14686996.2017.1386531, 18, 1, 816-827, 2017.12, [URL], Enhancing the fluxes in gas separation membranes is required for utilizing the membranes on a mass scale for CO2 capture. Membrane thinning is one of the most promising approaches to achieve high fluxes. In addition, sophisticated molecular transport across membranes can boost gas separation performance. In this review, we attempt to summarize the current state of CO2 separation membranes, especially from the viewpoint of thinning the selective layers and the membrane itself. The gas permeation behavior of membranes with ultimate thicknesses and their future directions are discussed..
17. Mersha, Anteneh; Selyanchyn, Roman; Fujikawa, Shigenori, Preparation of large, ultra-flexible and free-standing nanomembranes of metal oxide–polymer composite and their gas permeation properties, Clean Energy, 10.1093/ce/zkx006, 1, 1, 80-89, 2017.12.
18. Prabakaran Saravanan, Roman Selyanchyn, Hiroyoshi Tanaka, Shigenori Fujikawa, Stephen Matthew Lyth, Joichi Sugimura, Ultra-low friction between polymers and graphene oxide multilayers in nitrogen atmosphere, mediated by stable transfer film formation, Carbon, 10.1016/j.carbon.2017.06.090, 122, 395-403, 2017.10, [URL], The efficiency and lifetime of mechanical devices is significantly decreased by friction and wear, significantly contributing to global energy consumption. We previously showed that multilayer polyethyleneimine/graphene oxide thin films, (PEI/GO)15, on steel display superlubricity against a steel counterface ball. Here, the coefficient of friction (COF) and wear of (PEI/GO)15 with six different counterface polymer balls is investigated in air and in nitrogen, with particular focus on the formation of tribological transfer films. The polymers polyoxymethylene (POM), polyetheretherketone (PEEK), polyethylene (PE), poly(methyl methacrylate) (PMMA), polycarbonate (PC), and polytetrafluoroethylene (PTFE) are utilized. The COF of (PEI/GO)15 vs steel is 0.35 in both air and nitrogen. In air, the COF ranges from 0.06 to 0.17 for all polymers. Significantly, in nitrogen, four polymers (POM, PEEK, PMMA and PC) display ultra-low friction (COF ∼0.02) whilst two do not (PTFE and PE). The wear tracks and transfer films are investigated using e.g. optical microscopy, electron microscopy, and Raman mapping, and the tribological behavior is correlated to the hydrophilicity and relative hardness of the polymer balls compared to GO..
19. Fujikawa, Shigenori; Ariyoshi, Miho; Shigyo, Eiko; Fukakusa, Chihoko; Roman, Selyanchyn; Kunitake, Toyoki, Preferential CO2 Separation Over Nitrogen by a Free-standing and Nanometer-thick Membrane, Energy Procedia, 10.1016/j.egypro.2017.03.1907, 114, 608-612, 2017.08.
20. T. Bayer, R. Selyanchyn, Shigenori Fujikawa, Kazunari Sasaki, Stephen Matthew Lyth, Spray-painted graphene oxide membrane fuel cells, Journal of Membrane Science, 10.1016/j.memsci.2017.07.012, 541, 347-357, 2017.01, [URL], Graphene oxide (GO) is potentially a useful electrolyte material for polymer electrolyte membrane fuel cells due to its high strength, excellent hydrogen gas barrier properties, hydrophilicity, and proton conducting acidic functional groups. Here, GO paper is prepared from aqueous dispersion by vacuum-filtration, and the hydrogen permeability (2 × 10−2 barrer) is measured to be 3 orders of magnitude lower than Nafion (30 barrer) at 30 °C. The in-plane and through-plane conductivities are measured to be 49.9 and 0.3 mS cm−1, respectively. This significant anisotropy is attributed to the lamellar structure of GO, and the physical anisotropy between the thickness and lateral size of the GO nanoplatelets. Interestingly, the in-plane conductivity of GO is comparable to the through-plane conductivity of Nafion. GO membrane fuel cells (GOMFCs) are fabricated. To compensate for the low in-plane conductivity of GO, whilst taking advantage of the excellent hydrogen gas barrier properties, extremely thin electrode-supported GOMFCs are prepared by spray painting GO directly onto the electrocatalyst layer. The effect of membrane thickness on cell performance is investigated. Decreasing membrane thickness by spray painting improves the power density from 3.7 mW cm−2 for a 50 μm-thick membrane-supported GOMFC, to 79 mW cm−2 for a 3 µm-thick, spray-painted membrane, electrode-supported GOMFC..
21. Fujikawa, Shigenori; Koizumi, Mari; Taino, Akiko; Okamoto, Koichi., Fabrication and Unique Optical Properties of Two-Dimensional Silver Nanorod Arrays with Nanometer Gaps on a Silicon Substrate from a Self-Assembled Template of Diblock Copolymer., Langmuir, 10.1021/acs.langmuir.6b02934, 2016.01.
22. Saravanan, Prabakaran; Selyanchyn, Roman; Tanaka, Hiroyoshi; Darekar, Durgesh; Staykov, Aleksandar; Fujikawa, Shigenori; Lyth, Stephen Matthew; Sugimura, Joichi., Macroscale Superlubricity of Multilayer Polyethylenimine/Graphene Oxide Coatings in Different Gas Environments., ACS Appl. Mater. Interfaces, 10.1021/acsami.6b06779, 8, 40, 27179-27187, 2016.01.
23. Bayer, Thomas; Cunning, Benjamin V.; Selyanchyn, Roman; Nishihara, Masamichi; Fujikawa, Shigenori; Sasaki, Kazunari; Lyth, Stephen M., High Temperature Proton Conduction in Nanocellulose Membranes: Paper Fuel Cells., Chem. Mater., 10.1021/acs.chemmater.6b01990, 28, 13, 4805-4814, 2016.01.
24. Bayer, Thomas; Cunning, Benjamin V.; Selyanchyn, Roman; Daio, Takeshi; Nishihara, Masamichi; Fujikawa, Shigenori; Sasaki, Kazunari; Lyth, Stephen M., Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide., J. Membr. Sci., 10.1016/j.memsci.2016.02.017, 508, 51-61, 2016.01.
25. Kim, Byoungsu; Hillman, Febrian; Ariyoshi, Miho; Fujikawa, Shigenori; Kenis, Paul J. A., Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO., J. Power Sources, 10.1016/j.jpowsour.2016.02.043, 312, 192-198, 2016.01.
26. Roman Selyanchyn, Aleksandar Staykov, Shigenori Fujikawa, Incorporation of CO2-philic moieties into a TiO2 nanomembrane for preferential CO2 separation., RSC Advances, 10.1039/C6RA18419, 6, 91, 88664-88667, 2016.01.
27. Prabakaran Saravanan, Roman Selyanchyn, Hiroyoshi Tanaka, Shigenori Fujikawa, Joichi Sugimura, Frictional behavior of (PEI/GO)x solid lubricant coatings on steel substrates in various environments, 71st Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition 2016
Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition 2016
, 543-548, 2016.01.
28. Hisamitsu, Shota; Yanai, Nobuhiro; Fujikawa, Shigenori; Kimizuka, Nobuo., Photoinduced crystallization in ionic liquids: photodimerization-induced equilibrium shift and crystal patterning., Chem. Lett., 10.1246/cl.150261, 44, 7, 908-910, 2015.01.
29. Akamatsu, Norihisa; Tashiro, Wataru; Saito, Keisuke; Mamiya, Jun-ichi; Kinoshita, Motoi; Ikeda, Tomiki; Takeya, Jun; Fujikawa, Shigenori; Priimagi, Arri; Shishido, Atsushi., Facile strain analysis of largely bending films by a surface-labelled grating method., Sci. Rep., 10.1038/srep05377, 4, 5377-5377, 2014.01.
30. Kimura, Seiichro; Honda, Kuniaki; Kitamura, Keigo; Taniguch, Ikuo; Shitashima, Kiminori; Tsuji, Takeshi; Fujikawa, Shigenori., Preliminary Feasibility Study for On-Site Hydrogen Station with Distributed CO2 Capture and Storage System., Energy Procedia, 10.1016/j.egypro.2014.11.490, 63, 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, 4575-4584, 2014.01.
31. Taniguchi, Ikuo; Fujikawa, Shigenori., CO2 Separation with Nano-thick Polymeric Membrane for Pre- combustion., Energy Procedia, 10.1016/j.egypro.2014.11.025, 63, 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, 235-242, 2014.01.
32. Taniguchi, Ikuo; Ioh, Daichi; Fujikawa, Shigenori; Watanabe, Takayuki; Matsukuma, Yosuke; Minemoto, Masaki., An alternative carbon dioxide capture by electrochemical method., Chem. Lett., 10.1246/cl.140508, 43, 10, 1601-1603, 2014.01.
33. Lee, Yaerim; Maeda, Etsuo; Ho, Ya-Lun; Fujikawa, Shigenori; Delaunay, Jean-Jacques., High sensitivity refractive index sensing with strong light confinement in high-aspect-ratio U-cavity arrays., Sens. Actuators, B, 10.1016/j.snb.2014.05.033, 202, 137-143, 2014.01.
34. Taniguchi, Ikuo; Fujikawa, Shigenori., Preferential CO2 separation over H2 with poly(amidoamine) dendrimer-containing polymeric membrane., MRS Online Proc. Libr., 10.1557/opl.2014.347, 1660, Transport Properties in Nanocomposites, Taniguchi/1-Taniguchi/6, 2014.01.
35. Shao, Huaiyu; Ma, Weigang; Kohno, Masamichi; Takata, Yasuyuki; Xin, Gongbiao; Fujikawa, Shigenori; Fujino, Sayoko; Bishop, Sean; Li, Xingguo., Hydrogen storage and thermal conductivity properties of Mg-based materials with different structures., Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2014.02.063, 39, 18, 9893-9898, 2014.01.
36. Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo., Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode., Bioelectrochemistry, 10.1016/j.bioelechem.2013.10.005, 95, 15-22, 2014.01.
37. Yamada, Yoichi M. A.; Yuyama, Yoshinari; Sato, Takuma; Fujikawa, Shigenori; Uozumi, Yasuhiro., A Palladium-Nanoparticle and Silicon-Nanowire-Array Hybrid: A Platform for Catalytic Heterogeneous Reactions., Angew. Chem., Int. Ed., 10.1002/anie.201308541, 53, 1, 127-131, 2014.01.
38. Kajitani, Takashi; Suna, Yuki; Kosaka, Atsuko; Osawa, Terutsune; Fujikawa, Shigenori; Takata, Masaki; Fukushima, Takanori; Aida, Takuzo., o-Phenylene Octamers as Surface Modifiers for Homeotropic Columnar Ordering of Discotic Liquid Crystals., J. Am. Chem. Soc., 10.1021/ja4087853, 135, 39, 14564-14567, 2013.01.
39. Koishi, Takahiro; Yasuoka, Kenji; Willow, Soohaeng Yoo; Fujikawa, Shigenori; Zeng, Xiao Cheng., Molecular Insight into Different Denaturing Efficiency of Urea, Guanidinium, and Methanol: A Comparative Simulation Study., J. Chem. Theory Comput., 10.1021/ct3010968, 9, 6, 2540-2551, 2013.01.
40. E. Maeda, Y. Lee, Y. L. Ho, Shigenori Fujikawa, J. J. Delaunay, A 3D metallic structure array for refractive index sensing with optical vortex, IEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013
IEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013
, 10.1109/MEMSYS.2013.6474409, 973-976, 2013.01, [URL], A simple and large-scale fabrication technique for three dimensional structure arrays using a photolithography process was applied to realize an array of high-aspect-ratio metallic fins. The fin array enables light confinement between the high-aspect-ratio fins, thus generating optical vortices. The light confinement between the fins produces sharp dips in the reflection spectrum of the array. We show that the position of the dip wavelength is sensitive to change in the refractive index of the surrounding medium. Sensitivity to change in the refractive index was quantified by optical simulation and experimental measurements..
41. Maeda, Etsuo; Lee, Yaerim; Kobayashi, Youjiro; Taino, Akiko; Koizumi, Mari; Fujikawa, Shigenori; Delaunay, Jean-Jacques., Sensitivity to refractive index of high-aspect-ratio nanofins with optical vortex., Nanotechnology, 10.1088/0957-4484/23/50/505502, 23, 50, 505502/1-505502/6, 2012.01.
42. Patil, Bhushan; Fujikawa, Shigenori; Okajima, Takeyoshi; Ohsaka, Takeo., Enzymatic direct electron transfer at ascorbate oxidase-modified gold electrode prepared by one-step galvanostatic method., Int. J. Electrochem. Sci., 7, 6, 5012-5019, 2012.01.
43. Kuwahara, Rempei; Fujikawa, Shigenori; Kuroiwa, Keita; Kimizuka, Nobuo., Controlled Polymerization and Self-Assembly of Halogen-Bridged Diruthenium Complexes in Organic Media and Their Dielectrophoretic Alignment., J. Am. Chem. Soc., 10.1021/ja208958t, 134, 2, 1192-1199, 2012.01.
44. Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng., Measurement of Contact-Angle Hysteresis for Droplets on Nanopillared Surface and in the Cassie and Wenzel States: A Molecular Dynamics Simulation Study., ACS Nano, 10.1021/nn2005393, 5, 9, 6834-6842, 2011.01.
45. Kubo, Wakana; Fujikawa, Shigenori., Preparation of gold double pillar arrangement by nano-coating lithography and development of plasmon sensors., Mirai Zairyo, 11, 5, 60-63, 2011.01.
46. Kubo, Wakana; Hayakawa, Harumi; Miyoshi, Kentaro; Fujikawa, Shigenori., Size-controlled simple fabrication of Free-standing, ultralong metal nanobelt array., J. Nanosci. Nanotechnol., 10.1166/jnn.2011.3123, 11, 1, 131-137, 2011.01.
47. Kubo, Wakana; Fujikawa, Shigenori., Au double nanopillars with nanogap for plasmonic sensor., Nano Lett., 10.1021/nl100787b, 11, 1, 8-15, 2011.01.
48. T. Koishi, Shigenori Fujikawa, Static and dynamic properties of ionic liquids, Molecular Simulation, 10.1080/08927020903536358, 36, 15, 1237-1242, 2010.12, [URL], We performed molecular dynamics (MD) simulations of ionic liquids composed of 1-butyl-3-methylimidazolium ([bmim]) cation with PF6, NO 3 and Cl anions to determine their static and dynamic properties. Large-scale simulation of 4096 ion pairs (131,072 particles in [bmim]PF 6) was performed to estimate the system-size dependence of the static and dynamic properties. The diffusion constant, which is 100 times smaller than that of a normal liquid such as water, was estimated from long-time simulations. We also performed non-equilibrium MD simulations to determine the electrical conductivity. We obtained a nonlinear relationship between the electrical current and external electric field strength..
49. Koishi, Takahiro; Yasuoka, Kenji; Zeng, Xiao-Cheng; Fujikawa, Shigenori., Molecular dynamics simulations of urea-water binary droplets on flat and pillared hydrophobic surfaces., Faraday Discuss., 10.1039/b926919c, 146, Wetting Dynamics of Hydrophobic and Structured Surfaces, 185-193, 2010.01.
50. Kunitake, Toyoki; Fujikawa, Shigenori., Nanomembranes of solid acid electrolytes as a key component of the intermediate-temperature fuel cell., Nenryo Denchi, 9, 4, 73-78, 2010.01.
51. Kubo, Wakana; Fujikawa, Shigenori., Manipulation of a one dimensional molecular assembly of helical superstructures by dielectrophoresis., Appl. Phys. Lett., 10.1063/1.3253708, 95, 16, 163110/1-163110/3, 2009.01.
52. Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng., Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface., Proc. Natl. Acad. Sci. U. S. A., 10.1073/pnas.0902027106, 106, 21, 8435-8440, 2009.01.
53. Fujikawa, Shigenori; Muto, Emi; Kunitake, Toyoki., Nanochannel Design by Molecular Imprinting on a Free-Standing Ultrathin Titania Membrane., Langmuir, 10.1021/la9014916, 25, 19, 11563-11568, 2009.01.
54. Kubo, Wakana; Fujikawa, Shigenori., Embedding of a gold nanofin array in a polymer film to create transparent, flexible and anisotropic electrodes., J. Mater. Chem., 10.1039/b819290a, 19, 15, 2154-2158, 2009.01.
55. Miyoshi, Kentaro; Fujikawa, Shigenori; Kunitake, Toyoki., Fabrication of nanoline arrays of noble metals by electroless plating and selective etching process., Colloids Surf., A, 10.1016/j.colsurfa.2007.11.041, 321, 1-3, 238-243, 2008.01.
56. Takaki, Rie; Takemoto, Hiromi; Fujikawa, Shigenori; Toyoki, Kunitake., Fabrication of nanofins of TiO2 and other metal oxides via the surface sol-gel process and selective dry etching., Colloids Surf., A, 10.1016/j.colsurfa.2007.11.040, 321, 1-3, 227-232, 2008.01.
57. Miyoshi, Kentaro; Aoki, Yoshitaka; Kunitake, Toyoki; Fujikawa, Shigenori., Facile Fabrication of Silver Nanofin Array via Electroless Plating., Langmuir, 10.1021/la703512w, 24, 8, 4205-4208, 2008.01.
58. Li, Yuanzhi; Kunitake, Toyoki; Fujikawa, Shigenori; Ozasa, Kazunari., Photoluminescence Modification in 3D-Ordered Films of Fluorescent Microspheres., Langmuir, 10.1021/la700610p, 23, 17, 9109-9113, 2007.01.
59. Matsushita, Sachiko; Fujikawa, Shigenori; Onoue, Shinya; Kunitake, Toyoki; Shimomura, Masatsugu., Rapid fabrication of a smooth hollow-spheres array., Bull. Chem. Soc. Jpn., 10.1246/bcsj.80.1226, 80, 6, 1226-1228, 2007.01.
60. Fujikawa, Shigenori; Muto, Emi; Kunitake, Toyoki., Embedding of Individual Ferritin Molecules in Large, Self-Supporting Silica Nanofilms., Langmuir, 10.1021/la0635247, 23, 8, 4629-4633, 2007.01.
61. Tetsu Narumi, Yousuke Ohno, Noriaki Okimoto, Takahiro Koishi, Atsushi Suenaga, Noriyuki Futatsugi, Ryoko Yanai, Ryutaro Himeno, Shigenori Fujikawa, Makoto Taiji, Mitsuru Ikei, A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3, Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC'06, 10.1145/1188455.1188506, 2006.12, [URL], We have achieved a sustained performance of 55 TFLOPS for molecular dynamics simulations of the amyloid fibril formation of peptides from the yeast Sup35 in an aqueous solution. For performing the calculations, we used the MDGRAPE-3 system - -a special-purpose computer system for molecular dynamics simulations. Its nominal peak performance was 415 TFLOPS for Coulomb force calculations; this is the highest-ever performance reported for classical molecular dynamics simulations. Amyloid fibril formation is known to be related to the occurrence of severe diseases such as Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases. The Sup35 protein is a "yeast prion protein," which forms mini-crystals due to aggregation; it forms an effective platform for studying the formation process of amyloid fibrils. In these simulations, we first elucidate that the amyloid-forming peptides GNNQQNY aggregate at a higher frequency than non-amyloid-forming peptides SQNGNQQRG; further, the GNNQQNY peptides tend to form parallel two-stranded -sheets that would grow into a cross- amyloid nucleus. The results are consistent with those obtained experimentally. Furthermore, we could observe an early elongation of the amyloid nucleus. This result is expected to contribute toward a deeper understanding of the amyloid growth mechanism..
62. Fujikawa, Shigenori; Takaki, Rie; Kunitake, Toyoki., Fabrication of Arrays of Sub-20-nm Silica Walls via Photolithography and Solution-Based Molecular Coating., Langmuir, 10.1021/la061830e, 22, 21, 9057-9061, 2006.01.
63. Li, Yuanzhi; Kunitake, Toyoki; Fujikawa, Shigenori., Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres., J. Phys. Chem. B, 10.1021/jp061979z, 110, 26, 13000-13004, 2006.01.
64. Li, Yuanzhi; Kunitake, Toyoki; Fujikawa, Shigenori., Efficient fabrication of large, robust films of 3D-ordered polystyrene latex., Colloids Surf., A, 10.1016/j.colsurfa.2005.09.045, 275, 1-3, 209-217, 2006.01.
65. Fujikawa, Shigenori; Kunitake, Toyoki., 3D nanoarchitecture from ultrathin titania film via surface sol-gel process and photolithography., Chem. Lett., 10.1246/cl.2005.1414, 34, 10, 1414-1415, 2005.01.
66. Fujikawa, Shigenori; Takaki, Rie; Kunitake, Toyoki., Nanocopying of Individual DNA Strands and Formation of the Corresponding Surface Pattern of Titania Nanotube., Langmuir, 10.1021/la051554o, 21, 19, 8899-8904, 2005.01.
67. Kunitake, Toyoki; Fujikawa, Shigenori., Nanocopying as a Means of 3D Nanofabrication: Scope and Prospects., Aust. J. Chem., 10.1071/CH03129, 56, 10, 1001-1003, 2003.01.
68. Kunitake, Toyoki; Fujikawa, Shigenori., Three dimensional nanostructure preparation by nano-copy method., Mirai Zairyo, 3, 8, 20-27, 2003.01.
69. He, Junhui; Fujikawa, Shigenori; Kunitake, Toyoki; Nakao, Aiko., Preparation of Porous and Nonporous Silica Nanofilms from Aqueous Sodium Silicate., Chem. Mater., 10.1021/cm034253d, 15, 17, 3308-3313, 2003.01.
70. Fujikawa, Shigenori; Kunitake, Toyoki., Surface Fabrication of Hollow Nanoarchitectures of Ultrathin Titania Layers from Assembled Latex Particles and Tobacco Mosaic Viruses as Templates., Langmuir, 10.1021/la026979e, 19, 16, 6545-6552, 2003.01.
71. Fujikawa, Shigenori; Kunitake, Toyoki., Preparation of hollow structures composed of titania nanocrystal assembly., Int. J. Nanosci., 1, 5 & 6, 617-620, 2002.01.
72. He, Junhui; Ichinose, Izumi; Fujikawa, Shigenori; Kunitake, Toyoki., Synthesis of metal and metal oxide nanoparticles in the nanospace of ultrathin TiO2-gel films: role of the ion-exchange site., Int. J. Nanosci., 1, 5 & 6, 507-513, 2002.01.
73. Fujikawa, Shigenori; Kunitake, Toyoki., Surface fabrication of interconnected hollow spheres of nm-thick titania shell., Chem. Lett., 10.1246/cl.2002.1134, 11, 1134-1135, 2002.01.
74. He, Junhui; Ichinose, Izumi; Fujikawa, Shigenori; Kunitake, Toyoki; Nakao, Aiko., Reversible conversion of nanoparticles of metallic silver and silver oxide in ultrathin TiO2 films: a chemical transformation in nano-space., Chem. Commun., 10.1039/b204227b, 17, 1910-1911, 2002.01.
75. He, Junhui; Ichinose, Izumi; Fujikawa, Shigenori; Kunitake, Toyoki; Nakao, Aiko., A General, Efficient Method of Incorporation of Metal Ions into Ultrathin TiO2 Films., Chem. Mater., 10.1021/cm010880w, 14, 8, 3493-3500, 2002.01.
76. Ichinose, Izumi; He, Junhui; Fujikawa, Shigenori; Hashizume, Mineo; Huang, Jianguo; Kunitake, Toyoki., Ultrathin composite films: An indispensable resource for nanotechnology., RIKEN Rev., 37, 34-37, 2001.01.
77. Kimizuka, Nobuo; Fujikawa, Shigenori; Kunitake, Toyoki., Organization of hydrophilic nanoparticles on a hydrogel surface and their gel-assisted transfer to solid substrates., Adv. Mater., 10.1002/(SICI)1521-4095(199811)10:163.0.CO;2-T, 10, 16, 1373-1376, 1998.01.
78. Kimizuka, Nobuo; Shimizu, Masafumi; Fujikawa, Shigenori; Fujimura, Kotaro; Sano, Masahito; Kunitake, Toyoki., AFM observation of organogel nanostructures on graphite in the gel-assisted transfer technique., Chem. Lett., 10.1246/cl.1998.967, 10, 967-968, 1998.01.
79. Kimizuka, Nobuo; Fujikawa, Shigenori; Kunitake, Toyoki., Protein assembly on solid surfaces by gel-assisted transfer (GAT) technique., Chem. Lett., 10.1246/cl.1998.821, 8, 821-822, 1998.01.
80. Kimizuka, Nobuo; Fujikawa, Shigenori; Kuwahara, Hiroaki; Kunitake, Toyoki; Marsh, Andrew; Lehn, Jean-Marie., Mesoscopic supramolecular assembly of a 'Janus' molecule and a melamine derivative via complementary hydrogen bonds., J. Chem. Soc., Chem. Commun., 10.1039/C39950002103, 20, 2103-2104, 1995.01.
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. Shigenori FUJIKAWA, Development of Negative CO2 emission technologies based on free-standing polydimethylsiloxane-based nanomembranes
, Japan US Organic Inorganic Hybrid Materials Workshop, 2022.12.
2. Shigenori FUJIKAWA, Development of Global CO2 Recycling Technology towards “Beyond-Zero” Emission, Innovation for Cool Earth Forum, 2022.10, [URL], Direct CO2 capture from the air (direct air capture, DAC) is one of negative emission technologies that are expected to keep global warming below 1.5 °C. CO2 capture by permselective membranes is advantageous because of its smaller and simpler set-up. We have developed highly CO2 permeable nanomembrane which could separate diluted CO2 from N2 stream at the ambient condition. CO2 capture by membrane separation has no restrictions on the point of installation when implemented in society. This ubiquity of CO2 capture is an advantage of membrane separation, given that air can be found anywhere on the earth..
3. Shigenori FUJIKAWA, Research and developments of carbon management technologies toward “Beyond-Zero” society., Seul National University- Kyushu University Joint symposium, 2022.09, Climate change caused by emissions of greenhouse gases into the atmosphere is a most important issue for our society. The anthropogenic nature of climate change necessitates development of novel technological solutions in order to reverse the current carbon dioxide (CO2) trajectory. Direct CO2 capture from the air (direct air capture, DAC) is one among a variety of negative emission technologies that are expected to keep global warming below 1.5 °C, as recommended by the Intergovernmental Panel for Climate Change (IPCC). CO2 capture by permselective membranes is advantageous because of its smaller and simpler set-up. We have developed highly CO2 permeable nanomembrane which could separate CO2 from N2 stream with 1000 ppm of CO2 at the ambient condition. In addition, CO2 capture by membrane separation has no restrictions on the point of installation when implemented in society, so CO2 can be captured anywhere by membrane technology. This ubiquity of CO2 capture is an advantage of membrane separation, given that air can be found anywhere on the earth. Here, the potential of membrane separation for DAC is discussed and the perspective of membrane-based DAC and subsequent CO2 conversion technologies being developed in Kyushu University will be described..
4. Shigenori FUJIKAWA, Membrane-based Direct Air Capture -Possibilities and Prospect-, RadTech Asia 2022, 2022.08.
5. Shigenori FUJIKAWA, Negative carbon emission by nanomembranes aiming for a carbon recycling society
, Association of Pacific Rim Universities, 2022.05.
6. Shigenori FUJIKAWA, Direct Air Capture by Membranes, MRS webinar, 2022.04.
7. Shigenori FUJIKAWA, A New Strategy of Negative Carbon Emissions by Nanomembranes for Ubiquitous CO2 Capture, MRS fall meeting 2021, 2021.12.
8. Shigenori FUJIKAWA, Efficient CO2 capture by free-standing polysiloxane nanomembranes., Pacifichem2021, 2021.12.
9. Shigenori FUJIKAWA, Ubiquitous CO2 capture directly from air by nanometer-thick membranes, KTH Climate Action Center Guest lecture, 2021.10, [URL], In order to solve the problem of climate change caused by anthropogenic global warming, carbon dioxide (CO2) that has been emitted into the atmosphere must be captured directly from the atmosphere. This Direct Air Capture (DAC), which directly captures CO 2 from the atmosphere, is one of the negative emission technologies that are expected to keep global warming below 1.5 degrees Celsius. Since the atmosphere exists everywhere on the planet, CO 2 capture from the atmosphere must be achieved anywhere, independent of location. Membrane separation processes have the advantage over chemical solutions in that they are small, simple, and can be installed anywhere. For this purpose, we are developing thinner separation membranes made of highly CO2-permeable polymeric materials and attempting to realize CO 2 capture from the atmosphere by separation membranes. Recently, we have succeeded in developing a defect-free, free-standing CO2 separation nanomembrane that has the highest CO 2 permeability reported so far, with no gas leakage through pinholes, even though it is only about 30 nm thick (about 1/1500 of a hair). The nanomembrane has succeeded in selectively recovering CO 2 from a gas mixture of only 1,000 ppm, which is comparable to the concentration of CO 2 in the atmosphere. The advantage of the extremely efficient separation of CO 2 demonstrated in this study shows the feasibility of direct air capture by membranes, which had not been considered before..
10. Shigenori FUJIKAWA, A New Strategy of Negative Carbon Emissions by membranes for Ubiquitous CO2 capture, MIRAI 2.0, 2021.06, Climate change caused by emissions of greenhouse gases into the atmosphere is a most important issue for our society. The anthropogenic nature of climate change necessitates development of novel technological solutions in order to reverse the current CO2 trajectory.
Direct capture of the carbon dioxide (CO2) from the air (direct air capture, DAC) is one among a variety of negative emission technologies that are expected to keep global warming below 1.5 °C, as recommended by the Intergovernmental Panel for Climate Change (IPCC).
Current DAC technologies are mainly based on sorbent-based systems where CO2 is trapped in the solution or on the surface of the porous solids covered with the compounds with high CO2 affinity. These processes are currently rather expensive, although the cost is expected to go down as the technologies developed and deployed at scale.
CO2 capture by permselective membranes is advantageous because of its smaller and simpler set-up. Unfortunately, its efficiency is less than satisfactory for the practical operation of the DAC.
Among polymeric membrane materials, rubbery poly(dimethylsiloxane) (PDMS) is known to display high CO2 permeance and ultimate thinning of PDMS membranes is a promising and straight forward way to prepare high CO2 flux membranes.
We developed defect-free, free-standing nanomembranes of PDMS, and discuss the effect of the membrane thickness on the gas permeance by using precisely defined nanometer-thick PDMS membranes systematically. Throughout the efforts on ultimate thinning of PDMS membranes, our achieved CO2 permeance reaches almost 40,000 GPU (the highest one ever reported) and reasonable CO2/N2 selectivity at the thickness of 34 nm without a gas leak from pinholes. This value is much higher than those reported by other groups in the past (less than several thousand). Furthermore, the separation is achieved even at a CO2 concentration of 1,000 ppm in N2, which has never been investigated under such ultra-diluted concentration conditions in past reports. The advantages of extremely efficient separation of CO2 found in our result demonstrates the feasibility of direct air capture by a membrane, which has never been considered before..
11. Shigenori Fuijkawa, Efficient CO2 capture by free-standing nanomembranes, NanoMat2019, 2019.06.
12. Shigenori Fujikawa, Large and free-standing nanomembrane for molecular separations, Hanyang University, Seminar, 2019.05.
作品・ソフトウェア・データベース等
1. 藤川茂紀, 古石貴裕, 上江洲一也, 田上亨, 麻生英輝, 分子動力学シミュレーションソフト eMD2 (エムディスクウェア) , 2004.10
分子動力学シミュレーションを実行しつつ、実際に個別分子を操作することが可能な分子モデリングソフトウェア, 分子動力学シミュレーションを実行しつつ、実際に個別分子を操作することが可能な分子モデリングソフトウェア.
特許出願・取得
特許出願件数  41件
特許登録件数  0件
学会活動
所属学会名
表面科学会
Material Research Society
アメリカ化学会
応用物理学会
高分子学会
日本化学会
学協会役員等への就任
2019.04~2020.03, 日本表面科学会, 運営委員.
2016.04~2017.03, 日本表面科学会, 運営委員.
2014.10~2016.03, 日本化学会, 幹事.
学会大会・会議・シンポジウム等における役割
2023.12.11~2023.12.16, MRM2023/IUMRS-ICA2023, Symposia organizer.
2020.05.27~2020.05.29, 第69回高分子学会年次大会, 運営委員.
2014.09~2014.09, 第63回高分子討論会, 座長(Chairmanship).
2014.08~2014.08, IUMRS-ICA 2014, 座長(Chairmanship).
2016.12.13~2016.12.16, IPC2016, 実行員.
2016.10.13~2016.10.16, AsiaNano2016, 運営委員.
2015.09.08~2016.09.11, 日本分析化学会第64年会, 運営委員.
2014.08~2014.08, IUMRS-ICA 2014, セッションオーガナイザー.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2019年度 10  10 
2018年度 10  10 
2017年度
2016年度
2015年度
2014年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
Yale University, Department of Chemistry, UnitedStatesofAmerica, 1999.05~2000.03.
外国人研究者等の受入れ状況
2023.07~2023.07, 2週間未満, Univ. Illinois at Urbana Champaign, UnitedStatesofAmerica, .
2022.12~2025.03, 1ヶ月以上, 九州大学, Singapore, 国立研究開発法人 新エネルギー・産業技術総合開発機構.
2022.04~2024.03, 1ヶ月以上, 九州大学, China, 日本学術振興会.
2014.01~2015.03, 1ヶ月以上, カーボンニュートラルエネルギー国際研究所, Ukraine, 文部科学省.
受賞
ナノテクノロジー賞, (公財)九州先端科学技術研究所, 2015.10.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2020年度~2022年度, 基盤研究(B), 代表, 高分子分離膜界面デザインによる革新的CO2分離ナノ膜の創製.
2016年度~2021年度, 新学術領域研究, 分担, 分子の自己組織化に基づくナノ界面アシンメトリー化学.
2014年度~2016年度, 基盤研究(B), 代表, 金ナノフィンアレイによる近赤外光捕集ナノ界面の大面積創製.
2013年度~2018年度, 基盤研究(S), 連携, 自己組織化に基づく機能性高分子ナノシステムの開発.
2013年度~2015年度, 挑戦的萌芽研究, 分担, ナノキャビティの表面プラズモン閉じ込め効果を用いた疾病センサーの開発.
2010年度~2014年度, 新学術領域研究, 分担, 共振型3次元メタマテリアルの作製と機能評価.
2009年度~2012年度, 基盤研究(B), 連携, 電子供与体/受容体ナノ相分離構造のデザインによる高効率有機薄膜太陽電池の創製.
2007年度~2009年度, 若手研究(B), 代表, 液相リソグラフィー法を基軸とする酸化物ナノテープの革新的構造制御システムの構築.
2003年度~2005年度, 若手研究(B), 代表, 固体基板上のナノパターンを鋳型とする金属酸化物ナノ中空構造の合成と形状デザイン.
競争的資金(受託研究を含む)の採択状況
2022年度~2022年度, 研究成果最適展開支援プログラム(A-STEP) トライアウト, 代表, 超ガス透過性ナノ膜技術を用いた密閉式細胞培養ディッシュの開発.
2020年度~2029年度, ムーンショット型研究開発事業, 代表, “ビヨンド・ゼロ”社会実現に向けたCO2循環システムの研究開発.
2020年度~2022年度, 科学研究費補助金 (文部科学省), 代表, 高分子分離膜界面デザインによる革新的CO2分離ナノ膜の創製.
2016年度~2020年度, 科学研究費補助金 (文部科学省), 分担, 分子の自己組織化に基づくナノ界面アシンメトリー化学.
2013年度~2017年度, 科学研究費補助金 (文部科学省), 分担, 自己組織化に基づく機能性高分子ナノシステムの開発.
2014年度~2014年度, 九州大学 世界トップレベル研究者招へいプログラム, 代表, CO2を中心とした精密ガス分離に関する共同研究の推進.
2013年度~2013年度, 戦略的創造研究推進事業 (文部科学省), 分担, ナノ積層法による燃料電池・水電解セル開発.
2012年度~2017年度, 戦略的創造研究推進事業 (文部科学省), 分担, 先導的物質変換領域 「次元制御されたナノ空間体と不均一系集積型遷移金属ナノ触媒に融合した先導的π電子物質創製触媒システムの創出」.
2007年度~2012年度, 戦略的創造研究推進事業 (文部科学省), 分担, 自己組織化に基づくナノインターフェースの統合構築.
学内資金・基金等への採択状況
2015年度~2016年度, 世界トップレベル研究者招へいプログラム「Progress100」, 代表, テキサス大学オースティン校 Benny Freeman教授の招へい並びに国際共同研究の推進.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。