九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
田代 幸寛(たしろ ゆきひろ) データ更新日:2020.06.17



主な研究テーマ
生ゴミからのポリ乳酸プラスチック生産システムと乳酸発酵の改良に関する研究
キーワード:メタ発酵,複合微生物,光学活性乳酸
2012.02.
有機廃水・廃棄物中窒素原子の処理と利用のための微生物に関する研究
キーワード:自家発熱型高温好気発酵
2012.03.
好熱性微生物の生態とバイオテクノロジーへの応用
キーワード:微生物生態,高度好熱細菌
2012.03.
有機固型廃棄物の機能性コンポスト化に有用な好熱性微生物に関する研究
キーワード:機能性微生物,コンポスト化,廃棄物
2012.05.
1. リグノセルロース堆積土の微生物群集構造に関する研究
2. 新規有用土壌微生物の分離と応用に関する研究
3. 微生物によるバイオマスからのバイオ燃料およびバイオマテリアル生産に関する研究
キーワード:土壌微生物、微生物群集構造、スクリーニング、バイオ燃料、バイオマテリアル
2012.03.
従事しているプロジェクト研究
生物多様性保全のためのパームオイル産業とのグリーン経済の推進
2013.10~2017.03, 代表者:白井義人, 九州工業大学大学院生命体工学研究科, JST・JICA(日本)
本プロジェクトは、マレーシアにおけるパームオイル搾油工場の省エネ・省資源化を図り、環境浄化を促すばかりでなく、余剰のエネルギー・余剰バイオマスを利用し、価値のある製品生産を通じ、その収益から事業的にも成立する廃液のゼロ・ディスチャージを達成するとともに、マレーシアにおける生物多様性を保全することを目的としている。.
研究業績
主要著書
主要原著論文
1. Yukihiro Tashiro, Kosuke Kanda, Yuya Asakura, Toshihiko Kii, Huijun Cheng, Pramod Poudel, Yuki Okugawa, Kosuke Tashiro, Kenji Sakai, A unique autothermal thermophilic aerobic digestion process showing a dynamic transition of physicochemical and bacterial characteristics from the mesophilic to the thermophilic phase, Applied and Environmental Microbiology, 10.1128/AEM.02537-17, 84, 6, 2018.03, [URL], A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached > 50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria (Arcobacter trophiarum, 19 to 43%; Acinetobacter towneri, 6.3 to 30%), Bacteroidetes (Moheibacter sediminis, 43 to 54%), and Firmicutes (Thermaerobacter composti, 11 to 28%; Heliorestis baculata, 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration..
2. Clament Fui Seung Chin, Yoshihide Furuya, Mohd Huzairi Mohd Zainudin, Norhayati Ramli, Mohd Ali Hassan, Yukihiro Tashiro, Kenji Sakai, Novel multifunctional plant growth–promoting bacteria in co-compost of palm oil industry waste, Journal of Bioscience and Bioengineering, 10.1016/j.jbiosc.2017.05.016, 124, 5, 506-513, 2017.11, [URL], Previously, a unique co-compost produced by composting empty fruit bunch with anaerobic sludge from palm oil mill effluent, which contributed to establishing a zero-emission industry in Malaysia. Little was known about the bacterial functions during the composting process and fertilization capacity of this co-compost. We isolated 100 strains from the co-compost on 7 types of enumeration media and screened 25 strains using in vitro tests for 12 traits, grouping them according to three functions: plant growth promoting (fixation of nitrogen; solubilization of phosphorus, potassium, and silicate; production of 3-indoleacetic acid, ammonia, and siderophore), biocontrolling (production of chitinase and anti-Ganoderma activity), and composting (degradation of lignin, xylan, and cellulose). Using 16S rRNA gene sequence analysis, 25 strains with strong or multi-functional traits were found belong to the genera Bacillus, Paenibacillus, Citrobacter, Enterobacter, and Kosakonia. Furthermore, several strains of Citrobacter sedlakii exhibited a plant growth-stimulation in vivo komatsuna plant cultivation test. In addition, we isolated several multifunctional strains; Bacillus tequilensis CE4 (biocontrolling and composting), Enterobacter cloacae subsp. dissolvens B3 (plant growth promoting and biocontrolling), and C. sedlakii CESi7 (plant growth promoting and composting). Some bacteria in the co-compost play significant roles during the composting process and plant cultivation after fertilization, and some multifunctional strains have potential for use in accelerating the biodegradation of lignocellulosic biomass, protecting against Ganoderma boninense infection, and increasing the yield of palm oil..
3. Pramod Poudel, Yukihiro Tashiro, Hirokuni Miyamoto, Hisashi Miyamoto, Yuki Okugawa, Kenji Sakai, Development of a systematic feedback isolation approach for targeted strains from mixed culture systems, Journal of Bioscience and Bioengineering, 10.1016/j.jbiosc.2016.07.019, 123, 1, 63-70, 2017.01, [URL], Elucidation of functions of bacteria in a mixed culture system (MCS) such as composting, activated sludge system is difficult, since the system is complicating with many unisolated bacteria. Here, we developed a systematic feedback isolation strategy for the isolation and rapid screening of multiple targeted strains from MCS. Six major strains (Corynebacterium sphenisci, Bacillus thermocloacae, Bacillus thermoamylovorans, Bacillus smithii, Bacillus humi, and Bacillus coagulans), which are detected by denaturing gradient gel electrophoresis (DGGE) analysis in our previous study on MCS for L-lactic acid production, were targeted for isolation. Based on information of suitable cultivation conditions (e.g., media, pH, temperature) from the literature, feedback isolation was performed to form 136 colonies. The following direct colony matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was optimised as the second screening to narrow down 20 candidate colonies from similar spectra patterns with six closest type strains. This step could distinguish bacteria at the species level with distance similarity scores ≥0.55 corresponding to 16S rRNA gene sequence similarity ≥98.2%, suggesting that this is an effective technique to minimize isolates close to targeted type strains. Analysis of 16S rRNA gene sequences indicated that two targeted strains and one strain related to the target had successfully been isolated, showing high similarities (99.5–100%) with the sequences from the DGGE bands, and that the other candidates were affiliated with three strains that were closely related to the target species. This study proposes a new method for systematic feedback isolation that may be useful for isolating targeted strains from MCS for further investigation..
4. Yukihiro Tashiro, Hanae Tabata, Asuka Itahara, Natsuki Shimizu, Kosuke Tashiro, Kenji Sakai, Unique hyper-thermal composting process in Kagoshima City forms distinct bacterial community structures, Journal of Bioscience and Bioengineering, 10.1016/j.jbiosc.2016.04.006, 122, 5, 606-612, 2016.11, [URL], A unique compost, Satsuma soil, is produced from three types of wastewater sludge using hyper-thermal processes at temperatures much higher than that of general thermophilic processes in Kagoshima City, Japan. We analyzed the bacterial community structures of this hyper-thermal compost sample and other sludges and composts by a high-throughput barcoded pyrosequencing method targeting the 16S rRNA gene. In total, 621,076 reads were derived from 17 samples and filtered. Artificial sequences were deleted and the reads were clustered based on the operational taxonomic units (OTUs) at 97% similarity. Phylum-level analysis of the hyper-thermal compost revealed drastic changes of the sludge structures (each relative abundance) from Firmicutes (average 47.8%), Proteobacteria (average 22.3%), and Bacteroidetes (average 10.1%) to two main phyla including Firmicutes (73.6%) and Actinobacteria (25.0%) with less Proteobacteria (∼0.3%) and Bacteroidetes (∼0.1%). Furthermore, we determined the predominant species (each relative abundance) of the hyper-thermal compost including Firmicutes related to Staphylococcus cohnii (13.8%), Jeotgalicoccus coquinae (8.01%), and Staphylococcus lentus (5.96%), and Actinobacteria related to Corynebacterium stationis (6.41%), and found that these species were not predominant in wastewater sludge. In contrast, we did not observe any common structures among eight other composts produced, using the hyper-thermal composts as the inoculums, under thermophilic conditions from different materials. Principle coordinate analysis of the hyper-thermal compost indicated a large difference in bacterial community structures from material sludge and other composts. These results suggested that a distinct bacterial community structure was formed by hyper-thermal composting..
5. Yukihiro Tashiro, Shota Inokuchi, Pramod Poudel, Yuki Okugawa, Hirokuni Miyamoto, Hisashi Miayamoto, Kenji Sakai, Novel pH control strategy for efficient production of optically active l-lactic acid from kitchen refuse using a mixed culture system, Bioresource Technology, 10.1016/j.biortech.2016.05.031, 216, 52-59, 2016.09, [URL], Uninvestigated control factors of meta-fermentation, the fermentative production of pure chemicals and fuels in a mixed culture system, were examined for production of optically pure l-lactic acid (LA) from food waste. In meta-fermentations by pH swing control, l-LA production with 100% optical purity (OPl-LA) was achieved even using unsterilized model kitchen refuse medium with preferential proliferation of l-LA-producing Bacillus coagulans, a minor member in the seed, whereas agitation decreased OPl-LA drastically. pH constant control shortened the fermentation time but decreased OPl-LA and LA selectivity (SLA) by stimulating growth of heterofermentative Bacillus thermoamylovorans. Deliberately switching from pH swing control to constant control exhibited the best performance for l-LA production: maximum accumulation, 39.2 g L-1; OPl-LA, 100%; SLA, 96.6%; productivity, 1.09 g L-1 h-1. These results present a novel pH control strategy for efficient l-LA production in meta-fermentation based on a concept different from that of pure culture systems..
6. Shun ichi Baba, Yukihiro Tashiro, Hideaki Shinto, Kenji Sonomoto, Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum, Journal of Biotechnology, 10.1016/j.jbiotec.2011.06.004, 157, 4, 605-612, 2012.02, [URL], Living cells are alive and have the butanol-producing ability but not much proliferation under nitrogen source-limited condition. We investigated various butanol production systems with high density of living cells of Clostridium saccharoperbutylacetonicum N1-4 supplemented with methyl viologen (MV) as an electron carrier and nutrient dosing for activity regeneration. In continuous butanol production with high density of living cells, butanol yield was drastically increased from 0.365C-mol/C-mol with growing cells to 0.528C-mol/C-mol at a dilution rate of 0.85h -1, being increased with the butanol to total solvent ratio. This yield was increased to 0.591C-mol/C-mol by adding 0.01mM MV. MV addition increased not only butanol yield but also butanol concentration and productivity as compared to those without MV addition. However, living cells lost their activity with incubation time, which lowered the operational stability of the system. Therefore, to maintain constant stability, activity regeneration was carried out with high density of living cells and MV. This system produced butanol at high concentration (9.40gl -1) and productivity (7.99gl -1h -1) for approximately 100h with maintenance of considerably high yield of butanol (0.686C-mol/C-mol). Thus, we established a high-speed and highly efficient butanol production system..
7. Yukihiro Tashiro, Wataru Kaneko, Yanqi Sun, Keisuke Shibata, Kentaro Inokuma, Takeshi Zendo, Kenji Sonomoto, Continuous D-lactic acid production by a novelthermotolerant Lactobacillus delbrueckii subsp. lactis QU 41, Applied Microbiology and Biotechnology, 10.1007/s00253-010-3011-7, 89, 6, 1741-1750, 2011.03, [URL], We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166T and L. delbrueckii subsp. lactis JCM 1248T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50°C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43°C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h-1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date..
8. Yukihiro Tashiro, Hideaki Shinto, Miki Hayashi, Shun ichi Baba, Genta Kobayashi, Kenji Sonomoto, Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen, Journal of Bioscience and Bioengineering, 10.1263/jbb.104.238, 104, 3, 238-240, 2007.09, [URL], Non-growing Clostridium saccharoperbutylacetonicum N1-4 hardly produced butanol from only butyrate. As adding glucose to the medium, butyrate utilization and butanol production were stimulated. Addition of 0.1 mM methyl viologen as electron carrier resulted in the highest yield of butanol of 0.671 mol/mol to butyrate and glucose..
9. Yukihiro Tashiro, Katsuhisa Takeda, Genta Kobayashi, Kenji Sonomoto, Ayaaki Ishizaki, Sadazo Yoshino, High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method, Journal of Bioscience and Bioengineering, 10.1263/jbb.98.263, 98, 4, 263-268, 2004.10, [URL], A pH-stat fed-batch culture by feeding butyric acid and glucose has been studied in an acetone-butanol-ethanol (ABE) fermentation using Clostridium saccharoperbutylacetonicum N1-4. The specific butanol production rate increased from 0.10 g-butanol/g-cells/h with no feeding of butyric acid to 0.42 g-butanol/g-cells/h with 5.0 g/l butyric acid. The pH value in broth decreases with butyric acid production during acidogenesis, and them batyric acid reutilization and butanol prodnction result in a pH increase during solventogensis. The pH-stat fed-batch culture was performed to maintain a constant pH and butyric acid concentration in the culture broth, but feeding only butyric acid could not support butyric acid utilization and butanol production. Subsequently, when a mixture of butyric acid and glucose was fed, butyric acid was utilized and butanol was produced. To investigate the effect of the feeding ratio of butyric acid to glucose (B/G ratio), several B/G ratio solutions were fed. The maximum butanol production was 16 g/7 and the residual glucose concentration in broth was very low at a B/G ratio of 1.4. Moreover, yields of butanol in relation to cell mass and glucose utilization were 54% and 72% higher in pH-stat fed-batch culture with butyric acid than that of conventional batch culture, respectively..
主要総説, 論評, 解説, 書評, 報告書等
1. 田代幸寛, バイオ燃料生産におけるデザインドバイオマスの創生と高速高効率化に関する新生物化学工学研究 , 生物工学, 第93巻, 第3号, pp. 130-138, 第37回生物工学奨励賞(照井賞)受賞論文, 2015.03.
2. Yukihiro Tashiro, Tsuyoshi Yoshida, Takuya Noguchi, Kenji Sonomoto, Recent advances and future prospects for increased butanol production by acetone-butanol-ethanol fermentation, Engineering in Life Sciences, 10.1002/elsc.201200128, 第13巻, 第5号, pp. 432–445 , 2013.09, [URL], Presently, several researchers are increasingly focusing on producing butanol as the next-generation fuel by acetone-butanol-ethanol (ABE) fermentation. Butanol has many superior characteristics compared to other biofuels, such as ethanol. However, its production by ABE fermentation faces the challenges of low productivity and yield because of product inhibition and heterofermentation, respectively, and thereby, high costs. Until date, molecular biological techniques and fermentation engineering methods have been applied for high butanol production. Although glucose remains the substrate of choice since traditional research, it is now necessary to substitute glucose derived from edible starch to other substrates from low-cost feedstock, such as agricultural residue. In addition, ABE-producing clostridia cannot directly produce butanol from lignocelluloses. Therefore, recent research is focusing on pretreatment and enzymatic saccharification of the complex molecules derived from agricultural residue for use as feedstock in butanol production. This article reviews traditional research, including the metabolism patterns and characteristics of ABE-producing clostridia. Furthermore, this article describes developments in ABE fermentation with respect to the establishment of highly efficient butanol production processes, such as batch, fed-batch, and continuous cultures, with the introduction of butanol removal, as well as butanol production from lignocellulosic biomasses or alternative substrates to sugars..
主要学会発表等
学会活動
所属学会名
バイオインダストリー協会
日本乳酸菌学会
日本土壌肥料学会
日本乳酸菌学会
日本微生物生態学会
日本農芸化学会
日本生物工学会
学協会役員等への就任
2016.06, 日本生物工学会 サスティナブル工学研究部会, 幹事.
2012.07~2013.12, 日本生物工学会, バイオミディア編集委員.
2011.06~2016.05, 日本生物工学会 バイオマス循環利用研究部会, 幹事.
学会大会・会議・シンポジウム等における役割
2020.03.25~2020.03.28, 日本農芸化学会2020年度大会(福岡), 実行委員(総務).
2019.05.09~2019.05.10, 日本乳酸菌学会 2019年度日本乳酸菌学会泊まり込みセミナー, 実行委員.
2019.03.24~2019.03.27, 日本農芸化学会2019年度大会(東京), 座長(Chairmanship).
2018.09.22~2018.09.22, 2018年度日本農芸化学会西日本支部大会, 座長(Chairmanship).
2018.12.01~2018.12.01, 第25回日本生物工学会九州支部鹿児島大会(2018), 座長(Chairmanship).
2014.03.27~2014.03.30, 日本農芸化学会2014年度大会, 座長(Chairmanship).
2013.12.07~2013.12.07, 第20回日本生物工学会九州支部佐賀大会(2013), 座長(Chairmanship).
2013.11.22~2013.11.25, 第29回日本微生物生態学会大会, 座長(Chairmanship).
2012.12.01~2012.12.01, 第19回日本生物工学会九州支部大会(2012), 座長(Chairmanship).
2012.10.23~2012.10.26, 第64回日本生物工学会大会, 座長(Chairmanship).
2007.09.14~2007.09.15, 2007年度日本農芸化学会中四国・西日本合同大会, 座長(Chairmanship).
2016.12.02~2016.12.02, 第23回日本生物工学会九州支部飯塚大会(2016), 座長.
2016.09.17~2016.09.17, 日本農芸化学会2016年度西日本支部大会, 座長.
2016.05.12~2016.05.13, 日本乳酸菌学会 2016年度日本乳酸菌学会泊まり込みセミナー, 実行委員.
2015.12.05~2015.12.05, 第22回日本生物工学会九州支部宮崎大会(2015), 座長.
2015.11.12~2015.11.13, The 2nd Satellite Seminar, New Core to Core Program A. Advanced Research Networks on “Establishment of an international research core for new bio-research fields with microbes from tropical areas”, 実行委員.
2015.10.26~2015.10.28, 日本生物工学会 第67回日本生物工学会大会(2015)鹿児島大会, 実行委員.
2015.07.12~2015.07.16, 13th International Conference on the Biogeochemistry of Trace Elements, 実行委員.
2015.04.23~2015.04.24, 日本土壌肥料学会 2015 年度日本土壌肥料学会九州支部春季例会, 実行委員.
2014.09.18~2014.09.19, 日本農芸化学会2014年度西日本支部大会, 座長.
2014.03.27~2014.03.30, 日本農芸化学会2014年度大会, 座長.
2014.01.12~2014.01.12, 日本生物工学会 九州支部創立20周年記念講演会・祝賀会, 実行委員.
2013.12.07~2013.12.07, 第20回日本生物工学会九州支部佐賀大会(2013), 座長.
2013.11.23~2013.11.25, 第29回日本微生物生態学会大会, 座長.
2013.07.13~2013.07.14, 日本生物工学会 生物工学若手研究者の集い(若手会)夏のセミナー2013 , 実行委員.
2012.10.23~2012.10.26, 日本生物工学会大会2012, 座長.
2012.09.17~2012.09.17, 15th International Biotechnology Symposium (IBS) and Exhibition, シンポジウムオーガナイザー.
2011.03.28~2011.03.28, 日本農芸化学大会2011 国際シンポジウム, オーガナイザー.
2012.05.10~2012.05.11, 2012年度日本乳酸菌学会 泊まり込みセミナー, 実行副委員長.
学会誌・雑誌・著書の編集への参加状況
2018.04, バイオサイエンスとインダストリー, 国内, 編集委員.
2019.06, Journal of Bioscience and Bioengineering, 国内, 編集委員.
2012.10~2014.09, 日本生物工学会, 国内, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2019年度 20        20 
2018年度 14        14 
2017年度 12        12 
2016年度 11        11 
2015年度      
2014年度 12        12 
2013年度 12        12 
2012年度 15        15 
2011年度      
2010年度      
2009年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
Can Tho University, Vietnam, 2019.10~2019.10.
Universiti Malaysia Sabah (UMS), Malaysia, 2017.01~2017.01.
Universiti Putra Malaysia(UPM), Malaysia, 2013.02~2014.02.
外国人研究者等の受入れ状況
2017.05~2017.08, 1ヶ月以上, サバ大学, Malaysia.
2017.02~2017.05, 1ヶ月以上, サバ大学, Malaysia.
2016.09~2016.10, 1ヶ月以上, KhonKaen University, Thailand.
2016.04~2016.07, サバ大学, Malaysia.
2015.08~2015.11, サバ大学, Malaysia.
2015.08~2015.10, Cairo University, Egypt.
2015.03~2015.03, KhonKaen University, Thailand.
2014.02~2014.05, マレーシアプトラ大学, Malaysia.
受賞
第25回生物工学論文賞, 日本生物工学会, 2017.09.
第26 回生物工学技術賞, 日本生物工学会, 2017.09.
第24回生物工学論文賞, 日本生物工学会, 2016.09.
第37回生物工学奨励賞(照井賞), 日本生物工学会, 2014.09.
第22回生物工学論文賞, 日本生物工学会, 2014.09.
第21回生物工学論文賞, 日本生物工学会, 2013.09.
第16回生物工学論文賞, 日本生物工学会, 2008.08.
ポスター賞, 9th International Workshop on the Regulation of Metabolism, Genetics, and Development of the Solvent-and Acid-forming Clostridia, 2006.05.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2016年度~2018年度, 基盤研究(C), 代表, 有価物生産のための複合微生物高度制御化と機能解析基盤技術の開発.
2014年度~2015年度, 若手研究(B), 代表, 好熱性バチルス属細菌による低環境負荷型・省エネ型新規乳酸生産プロセスの開発と解析.
競争的資金(受託研究を含む)の採択状況
2019年度~2020年度, 日本生命財団 若手研究・奨励研究助成, 代表, ユニークな排水処理プロセスにおける複合微生物の機能解明および環境浄化・資源循環へ向けた高効率化
.
2018年度~2019年度, ロッテ財団奨励研究助成, 代表, 食循環利用を目指した複合微生物によるメタ発酵技術の高効率化と基盤理論の構築.
2017年度~2018年度, 三島海雲記念財団学術研究奨励金, 代表, 新規に分離された植物成長促進細菌の機能解析および微生物肥料・農薬への応用.
学内資金・基金等への採択状況
2013年度~2015年度, 九州大学教育研究プログラム・研究拠点形成プロジェクト (テニュアトラック研究奨励費), 代表, 有用物質生産を目指した高温メタ発酵プロセスの開発とデザイン.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」