九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
後藤 栄治(ごとうえいじ) データ更新日:2024.04.09

教授 /  農学研究院 環境農学部門 森林環境科学


主な研究テーマ
フォトトロピン非依存の葉緑体運動
キーワード:葉緑体運動
2019.01~2024.01.
野外に生育する植物の葉緑体運動
キーワード:葉緑体運動、野生植物
2018.01~2024.01.
葉緑体運動の制御機構の解明
キーワード:葉緑体運動
2021.01~2025.01.
CAM植物における光依存的な気孔運動
キーワード:CAM植物、気孔開口
2015.04~2018.04.
葉緑体光定位運動機構の解明
キーワード:葉緑体、光応答
2015.04~2020.04.
裸子植物における光応答機構の解明
キーワード:裸子植物、光応答
2016.04~2018.04.
光応答の改変による植物生産性の向上
キーワード:光応答、光合成
2015.04~2016.06.
青色光受容体フォトトロピンの細胞内局在に関する研究
キーワード:フォトトロピン、質量分析
2011.04~2012.03.
研究業績
主要著書
1. 小池孝良、塩尻かおり、中村誠宏、鎌田直人・・・編, 木本植物の被食防衛〈変動環境下でゆらぐ植食者との関係〉, 共立出版, 2023.02.
主要原著論文
1. Kazuhiro Ishishita, Takeshi Higa, Hidekazu Tanaka, Shin Ichiro Inoue, Aeri Chung, Tomokazu Ushijima, Tomonao Matsushita, Toshinori Kinoshita, Masato Nakai, Masamitsu Wada, Noriyuki Suetsugu, Eiji Gotoh, Phototropin2 contributes to the chloroplast avoidance response at the chloroplast-plasma membrane interface, Plant physiology, 10.1104/pp.20.00059, 183, 5, 304-316, 2020.05, [URL], Blue-light-induced chloroplast movements play an important role in maximizing light utilization for photosynthesis in plants. Under a weak light condition, chloroplasts accumulate to the cell surface to capture light efficiently (chloroplast accumulation response). Conversely, chloroplasts escape from strong light and move to the side wall to reduce photodamage (chloroplast avoidance response). The blue light receptor phototropin (phot) regulates these chloroplast movements and optimizes leaf photosynthesis by controlling other responses in addition to chloroplast movements. Seed plants such as Arabidopsis (Arabidopsis thaliana) have phot1 and phot2. They redundantly mediate phototropism, stomatal opening, leaf flattening, and the chloroplast accumulation response. However, the chloroplast avoidance response is induced by strong blue light and regulated primarily by phot2. Phots are localized mainly on the plasma membrane. However, a substantial amount of phot2 resides on the chloroplast outer envelope. Therefore, differentially localized phot2 might have different functions. To determine the functions of plasma membrane- and chloroplast envelope-localized phot2, we tethered it to these structures with their respective targeting signals. Plasma membrane-localized phot2 regulated phototropism, leaf flattening, stomatal opening, and chloroplast movements. Chloroplast envelope-localized phot2 failed to mediate phototropism, leaf flattening, and the chloroplast accumulation response but partially regulated the chloroplast avoidance response and stomatal opening. Based on the present and previous findings, we propose that phot2 localized at the interface between the plasma membrane and the chloroplasts is required for the chloroplast avoidance response and possibly for stomatal opening as well..
2. Miki Kihara, Tomokazu Ushijima, Yoshiyuki Yamagata, Yukinari Tsuruda, Takeshi Higa, Tomomi Abiko, Takahiko Kubo, Masamitsu Wada, Noriyuki Suetsugu, Eiji Gotoh, Light-induced chloroplast movements in Oryza species, Journal of Plant Research, 10.1007/s10265-020-01189-w, 2020.01, [URL], Light-induced chloroplast movements control efficient light utilization in leaves, and thus, are essential for leaf photosynthesis and biomass production under fluctuating light conditions. Chloroplast movements have been intensively analyzed using wild-type and mutant plants of Arabidopsis thaliana. The molecular mechanism and the contribution to biomass production were elucidated. However, the knowledge of chloroplast movements is very scarce in other plant species, especially grass species including crop plants. Because chloroplast movements are efficient strategy to optimize light capture in leaves and thus promote leaf photosynthesis and biomass, analysis of chloroplast movements in crops is required for biomass production. Here, we analyzed chloroplast movements in a wide range of cultivated and wild species of genus Oryza. All examined Oryza species showed the blue-light-induced chloroplast movements. However, O. sativa and its ancestral species O. rufipogon, both of which are AA-genome species and usually grown in open condition where plants are exposed to full sunlight, showed the much weaker chloroplast movements than Oryza species that are usually grown under shade or semi-shade conditions, including O. officinalis, O. eichingeri, and O. granulata. Further detailed analyses of different O. officinalis accessions, including sun, semi-shade, and shade accessions, indicated that the difference in chloroplast movement strength between domesticated rice plants and wild species might result from the difference in habitat, and the shape of mesophyll chlorenchyma cells. The findings of this study provide useful information for optimizing Oryza growth conditions, and lay the groundwork for improving growth and yield in staple food crop Oryza sativa..
3. Eiji Gotoh, Kohei Oiwamoto, Shin Ichiro Inoue, Ken Ichiro Shimazaki, Michio Doi, Stomatal response to blue light in crassulacean acid metabolism plants Kalanchoe pinnata and Kalanchoe daigremontiana, Journal of Experimental Botany, 10.1093/jxb/ery450, 70, 4, 1367-1374, 2019.02, [URL], Blue light (BL) is a fundamental cue for stomatal opening in both C 3 and C 4 plants. However, it is unknown whether crassulacean acid metabolism (CAM) plants open their stomata in response to BL. We investigated stomatal BL responses in the obligate CAM plants Kalanchoe pinnata and Kalanchoe daigremontiana that characteristically open their stomata at night and close them for part of the day, as contrasted with C 3 and C 4 plants. Stomata opened in response to weak BL superimposed on background red light in both intact leaves and detached epidermal peels of K. pinnata and K. daigremontiana. BL-dependent stomatal opening was completely inhibited by tautomycin and vanadate, which repress type 1 protein phosphatase and plasma membrane H + -ATPase, respectively. The plasma membrane H + -ATPase activator fusicoccin induced stomatal opening in the dark. Both BL and fusicoccin induced phosphorylation of the guard cell plasma membrane H + -ATPase in K. pinnata. These results indicate that BL-dependent stomatal opening occurs in the obligate CAM plants K. pinnata and K. daigremontiana independently of photosynthetic CO 2 assimilation mode..
4. Eiji Gotoh, Noriyuki Suetsugu, Wataru Yamori, Kazuhiro Ishishita, Ryota Kiyabu, Masako Fukuda, Takeshi Higa, Bungo Shirouchi, Masamitsu Wada, Chloroplast Accumulation Response Enhances Leaf Photosynthesis and Plant Biomass Production, Plant Physiology, 10.1104/pp.18.00484, 178, 3, 1358-1369, 2018.11, [URL], Under high light intensity, chloroplasts avoid absorbing excess light by moving to anticlinal cell walls (avoidance response), but under low light intensity, chloroplasts accumulate along periclinal cell walls (accumulation response). In most plant species, these responses are induced by blue light and are mediated by the blue light photoreceptor, phototropin, which also regulates phototropism, leaf flattening, and stomatal opening. These phototropin-mediated responses could enhance photosynthesis and biomass production. Here, using various Arabidopsis (Arabidopsis thaliana) mutants deficient in chloroplast movement, we demonstrated that the accumulation response enhances leaf photosynthesis and plant biomass production. Conspicuously, phototropin2 mutant plants specifically defective in the avoidance response but not in other phototropin-mediated responses displayed a constitutive accumulation response irrespective of light intensities, enhanced leaf photosynthesis, and increased plant biomass production. Therefore, our findings provide clear experimental evidence of the importance of the chloroplast accumulation response in leaf photosynthesis and biomass production..
5. Gotoh Eiji, Suetsugu Noriyuki, Higa Takeshi, Matsushita Tomonao, Tsukaya Hirokazu, Wada Masamitsu, Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis, SCIENTIFIC REPORTS, 10.1038/s41598-018-19896-9, 8, 2018.01, Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m−2 s−1), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis..
6. Noriyuki Suetsugu*, Takeshi Higa*, Eiji Gotoh*, Masamitsu, Light-Induced Movements of Chloroplasts and Nuclei Are Regulated in Both Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis thaliana, PLOS ONE, 10.1371/journal.pone.0157429, 11, 6, *These authors contributed equally., 2016.06.
7. Ishishita Kazuhiro, Noriyuki Suetsugu, Yuki Hirose, Tomonao Matsushita, Takeshi Higa, Masamitsu Wada, Michio Doi, Eiji Gotoh, Functional characterization of blue-light-induced responses and PHOTOTROPIN 1 gene in Welwitschia mirabilis, JOURNAL OF PLANT RESEARCH, 10.1007/s10265-016-0790-7, 129, 2, 175-187, 2016.03.
主要学会発表等
1. Eiji Gotoh, Adaptation to weak light environments in plants -Chloroplast photorelocation movements and leaf anatomy changes-
, International Congress on Photosynthesis Research 2022, 2022.08, More than 70% of the plant species on Earth thrive on the forest floor, where trees obstruct sunlight. These plants are exposed to a wide range of light intensities, ranging from dim light (only a fraction of the sunlight) to direct sunlight filtering through the trees. While light is essential for photosynthesis and provides energy to plants, strong light can be detrimental. As a result, plants have developed mechanisms to sense the direction and intensity of light, allowing them to adapt to varying light conditions at the organelle, cellular, and tissue levels.
One of the plant responses to the light environment is chloroplast photorelocation movements. Plants can modulate light absorption in their leaves by altering the intracellular arrangement of chloroplasts in response to light intensity. This enables them to optimize photosynthesis in low-light conditions while safeguarding against light-induced damage in high-light conditions. Through studying model plant mutants, our research group has demonstrated the significance of changes in chloroplast localization for plant growth. Additionally, we have researched 250 plant species on forest floors throughout Japan, examining the chloroplast movement and the morphology of palisade cells. Our findings indicate that cell shape is adapted to the specific light environment. In this presentation, I would like to share our latest discoveries obtained through a comprehensive analysis of wild plants..
2. 後藤栄治, 変動する光環境に対する葉緑体の細胞内局在変化, 日本植物学会第85回大会, 2021.09.
3. 後藤栄治, 植物の光環境適応における光応答反応の意義に関する研究, 日本植物学会第85回大会, 2021.09.
4. 後藤栄治, 植物の弱光環境適応における葉緑体運動の意義に関する研究, 第20回日本農学進歩賞 , 2021.11.
5. 後藤栄治, Chloroplast accumulation response enhances leaf photosynthesis and plant biomass production, 日本森林学会第132回大会, 2021.03.
6. 後藤栄治, 葉緑体運動における新たな制御機構, 日本植物学会, 2020.09.
7. 後藤栄治, A novel regulation in chloroplast movements, 第61回日本植物生理学会, 2020.03.
8. 後藤栄治, 林床植物の光環境適応戦略, 三学会福岡例会, 2019.12.
9. Eiji Gotoh, Noriyuki Suetsugu, Wataru Yamori, Masamitsu Wada, Chloroplast movement regulates trade-off between light harvesting and photoprotection under a fluctuating light environment, 1st Japan-US Binational Seminar, 2019.10.
10. 鄭愛梨、瀬戸口浩彰、和田正三、後藤栄治, 葉緑体光定位運動では光のシグナルより炭酸ガス濃度が優先される, 日本植物学会第83回大会, 2019.09.
11. Eiji Gotoh, Kazuhiro Ishishita, Takeshi Higa, Shin’ichiro Inoue, Noriyuki Suetsugu, Masamitsu Wada, Chloroplast outer membrane-localized phototropin induces the chloroplast avoidance response, 18TH INTERNATIONAL WORKSHOP ON PLANT MEMBRANE BIOLOGY, 2019.07.
12. Eiji Gotoh, Kazuhiro Ishishita, Takeshi Higa, Shin’ichiro Inoue, Noriyuki Suetsugu, Masamitsu Wada, Chloroplast outer membrane-localized phototropin induces the chloroplast avoidance response., 日本植物生理学会, 2019.03.
13. 後藤栄治、木藪亮太、瀬戸口浩彰、篠原慶規、久米篤、和田正三, 林床植物の葉緑体光定位運動, 日本植物学会, 2018.09.
14. Eiji Gotoh, Noriyuki Suetsugu, Wataru Yamori, Takeshi Higa, Bungo Shirouchi, Masamitsu Wada, Chloroplast movement regulates trade-off between light harvesting and photoprotection under a fluctuating light environment, International Symposium on Plant Photobiology, 2018.01.
15. Eiji Gotoh, Noriyuki Suetsugu, Kazuhiro Ishishita, Ryota Kiyabu, Takeshi Higa, Bungo Shirouchi, Masamitsu Wada, Chloroplast accumulation response enhances leaf photosynthesis and plant biomass production, Taiwan-Japan Plant Biology, 2017.11.
16. 石下和宏, 後藤 真朋, 末次 憲之, 比嘉 毅, 和田 正三, 後藤 栄治, 青色光受容体フォトトロピンの機能分化は裸子植物で既に起きていた, 日本森林学会, 2017.03.
17. 後藤 栄治, 井上晋一郎, 大岩本康平, 島崎 研一郎, 土井 道生, CAM植物における青色光依存の気孔開口, 日本植物学会, 2016.09.
18. 後藤 栄治, 大岩本康平, 北川裕基, 井上晋一郎, 島崎 研一郎, 土井 道生, CAM植物における青色光依存の気孔開口, 日本植物生理学会, 2015.03.
19. 後藤 栄治, 末次 憲之, 比嘉 毅, 和田 正三, 葉緑体集合反応は植物の生長を促進する, 日本植物生理学会, 2014.03.
20. 後藤栄治、後藤光太、津山孝人, 樹木葉における弱光下の光合成制御の解析, 第121回日本森林学会大会, 2010.04.
21. 後藤栄治、後藤光太、津山孝人, シロイヌナズナにおける連続光消灯後のクロロフィル蛍光強度の一過的な変動について, 2010.03.
22. 後藤栄治、後藤光太、津山孝人、小林善親, ポプラにおける低温光阻害‐光合成関連遺伝子群の解析‐, 2009.03.
23. 後藤栄治、松本雅好、小川健一、津山孝人、小林善親, 光化学系Ⅰサイクリック電子伝達反応の制御機構, 2009.03.
24. 後藤栄治、後藤光太、津山孝人、小林善親, ポプラにおける低温光阻害, 日本森林学会, 2008.03.
25. 後藤栄治、松本雅好、小川健一、鹿内利治、津山孝人、小林善親, 光合成電子伝達変異株の探索, 日本植物生理学会, 2008.03.
学会活動
所属学会名
日本植物生理学会、日本植物学会、日本森林学会
学会大会・会議・シンポジウム等における役割
2022.04~2023.03, 九州沖縄植物学会, 代議員.
2022.01.01~2024.12.31, 日本植物生理学会, 代議員.
2018.09~2018.09, 第82回日本植物学会, 座長.
2019.03~2019.03.01, 第60回日本植物生理学会, 座長.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2022年度      
2021年度      
2020年度      
2019年度      
2018年度
その他の研究活動
海外渡航状況, 海外での教育研究歴
KEFRI, Kenya, 2018.09~2018.09.
KEFRI, Kenya, 2016.07~2016.07.
KEFRI, Kenya, 2015.07~2015.07.
KEFRI, Kenya, 2012.08~2012.08.
KEFRI, Kenya, 2013.07~2013.07.
受賞
九州大学農学研究院賞, 九州大学農学研究院, 2022.03.
日本農学進歩賞, 公益財団法人農学会, 2021.11.
日本植物学会奨励賞, 日本植物学会, 2021.09.
日本森林学会奨励賞, 日本森林学会, 2021.03.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2023年度~2024年度, 挑戦的研究(萌芽), 代表, 葉緑体光定位運動の新奇制御機構の解明.
2023年度~2024年度, 学術変革領域研究(A), 代表, 不均一な環境変化への適応を支える葉緑体の細胞内局在変化の分子機構解明.
2023年度~2025年度, 基盤研究(B), 代表, 植物の微弱光環境適応機構の分子基盤解明と進化過程の推定.
2021年度~2022年度, 学術変革領域研究(A), 代表, 不均一な環境変化への適応を支える葉緑体の細胞内局在変化の分子機構解明.
2021年度~2022年度, 新学術領域研究(研究領域提案型), 代表, 光環境への適応により獲得した省エネ葉構造による力学的最適化.
2020年度~2022年度, 基盤研究(B), 代表, 弱光環境で生育する植物の新奇適応機構の解明.
2019年度~2020年度, 新学術領域研究, 代表, 光合成依存の葉緑体運動の分子機構解明.
2018年度~2020年度, 基盤研究(B), 分担, 日射利用に対する陸上植物の機能的進化と環境適応の解明.
2018年度~2020年度, 基盤研究(C), 分担, アブシジン酸による気孔閉鎖における孔辺細胞葉緑体の関与.
2018年度~2019年度, 若手研究, 代表, 植物の光環境への適応における葉緑体光定位運動の寄与.
2016年度~2016年度, 基盤研究(A), 分担, 葉緑体の運動推進力発生機構の解明.
2015年度~2016年度, 若手研究(B), 代表, 葉緑体光定位運動を利用した針葉樹の生産性向上.
2015年度~2015年度, 挑戦的萌芽研究, 分担, ホモポリマー・プライマー伸長による針葉樹葉緑体ゲノムタイピングシステムの構築.
2014年度~2016年度, 基盤研究(C), 分担, CAM植物の気孔開口メカニズムの解明.
2014年度~2016年度, 基盤研究(A), 分担, トランスクリプトームの網羅的解析情報に基づく第三世代マツ材線虫病抵抗性品種の創出.
2013年度~2013年度, 挑戦的萌芽研究, 分担, Long-PCRによる針葉樹葉緑体ゲノム構造の解明とゲノム完全解読システムの構築.
日本学術振興会への採択状況(科学研究費補助金以外)
2023年度~2025年度, 特別研究員, 代表, 葉緑体光定位運動から探る炭酸ガスによる光情報制御メカニズムの解明.
寄附金の受入状況
2020年度, 市村清新技術財団, 市村清新技術財団/植物の光環境への適応を制御する葉緑体光定位運動の非破壊的測定技術の開発.
2019年度, 武田科学振興財団, 武田科学振興財団/植物の光シグナル伝達における新奇制御機構の解明.
2019年度, 公益財団法人ノバルティス科学振興財団, ノバルティス科学振興財団/植物の生長を司る葉緑体局在変化の新たな制御機構の解明.
2019年度, 市村清新技術財団, 市村清新技術財団/植物の光環境への適応を制御する葉緑体光定位運動の非破壊的測定技術の開発.
2016年度, 国際科学技術財団, 研究助成/植物の環境応答を利用した植物生産性向上技術の開発.
学内資金・基金等への採択状況
2023年度~2023年度, 社会変革を先導する環境・ 料リサーチコアの創出を目指したFS研究の実施, 代表, 人類に をもたらすための主役となる植物の創出.
2020年度~2020年度, プラズマバイオコンソーシアムプロジェクト, 代表, 放電プラズマ照射による植物の生長促進における葉緑体の局在変化の寄与.
2017年度~2017年度, QRプログラム, 代表, 炭酸ガス依存の葉緑体運動の分子機構の解明.
2015年度~2016年度, 農学研究院若手教員支援事業(共同研究プロジェクト支援), 代表, 光が導く革新的植物生産技術技術への挑戦.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。