九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
田中 賢(たなか まさる) データ更新日:2023.11.22

教授 /  先導物質化学研究所 ソフトマテリアル部門 ソフトマテリアル学際化学


主な研究テーマ
生体親和性に優れた診断・治療用ソフトバイオマテリアルの設計と医療機器への応用
キーワード:生体親和性 細胞接着 バイオ界面 水の構造 医療機器
2015.03~2025.12.
従事しているプロジェクト研究
科研費(基盤A, 基盤B,萌芽, 新学術領域), AMED, JST A-STEP, マッチングプランナーなど
2021.04~2024.03, 代表者:田中 賢, 九州大学.
生物材料に学ぶ医療材料設計に関する日英米印国際共同研究
2021.04~2024.03, 代表者:田中 賢, 九州大学.
JSPS二国間共同研究事業
2019.06~2022.06, 代表者:田中 賢, 九州大学, 日本.
文科省新学術領域研究
2019.06~2024.03, 代表者:田中 賢.
科研費(基盤A, 基盤B,萌芽, 新学術領域), ERATO, AMED, JST A-STEP, マッチングプランナーなど
2015.04~2021.03, 代表者:田中 賢, 九州大学.
研究業績
主要著書
主要原著論文
1. Daiki Murakami, Yoko Kitahara, Shingo Kobayashi, Masaru Tanaka, Thermosensitive Polymer Biocompatibility Based on Interfacial Structure at Biointerface, ACS Biomaterials Science and Engineering, 10.1021/acsbiomaterials.8b00081, 4, 5, 1591-1597, 2018.05, [URL], The interfacial structure of a thermosensitive biocompatible polymer, poly[2-(2-methoxyethoxy)ethyl methacrylate] (PMe2MA), at the polymer/phosphate-buffered saline (PBS) interface was investigated by atomic force microscopy. A number of nanometer scale protrusions appeared at 37 °C and disappeared at 22 °C, reversibly. This structural change occurred above the lower critical solution temperature of PMe2MA in PBS (19 °C), indicating that the formation of protrusions was explained by the microphase separation of polymer and water at the interfacial region. The protein adsorption and platelet adhesion onto PMe2MA interface were drastically restrained at 22 °C compared to that at 37 °C. Detachment of NIH3T3 cells accompanied by the dissipation of protrusions on the PMe2MA interface was also demonstrated. These results indicate that the protrusions act as the scaffold for the protein adsorption and cell adhesion..
2. Shingo Kobayashi, Miyuki Wakui, Yukihisa Iwata, Masaru Tanaka, Poly(ω-methoxyalkyl acrylate)s
Nonthrombogenic Polymer Family with Tunable Protein Adsorption, Biomacromolecules, 10.1021/acs.biomac.7b01247, 18, 12, 4214-4223, 2017.12, [URL], A series of polyacrylates with different n-alkyl side chain lengths (1 to 6, and 12 carbons) and a ω-methoxy terminal group (poly(ω-methoxyalkyl acrylate): PMCxA) were prepared to study their nonthrombogenicity using human platelet adhesion, micro bicinchoninic acid (micro BCA) protein assay, and enzyme-linked immunosorbent assay (ELISA) tests. In all cases, human platelet adhesion was suppressed on the PMCxA-coated substrates, and the number of human platelets adhered to the PMC3A (poly(3-methoxypropyl acrylate))-coated surface was comparable to that of commercialized nonthrombogenic coating agent poly(2-methoxyethyl acrylate) (PMEA, equal to PMC2A). The amount of protein adsorbed onto the PMCxA was investigated by micro BCA using bovine serum albumin (BSA) and human fibrinogen (hFbn), revealing that PMC3A exhibited significantly high resistance to nonspecific BSA adsorption. Additionally, the amount of hFbn adsorbed onto the PMC3A was suppressed to the same extent as PMEA. The exposure degree of platelet adhesion sites in adsorbed hFbn was evaluated using an ELISA test, and the degree on the PMCxA with three to six methylene carbons was comparable to the PMEA. The hydration water structure in the hydrated PMCxA was also characterized using differential scanning calorimetry (DSC). The amount of intermediate water, which is the hydration water molecules that moderately interact with the polymer matrix, was maximum in the PMEA with two methylene run lengths, whereas the amount decreased by increasing the number of methyelnes in the side chain. The amount of adsorbed protein increased with a decrease in the amount of intermediate water, suggesting that the protein adsorption amount is tunable by simply changing the number of methylene carbons in the side chain. The present study revealed that poly(ω-methoxyalkyl acrylate)s are useful for blood-contacting medical devices, and PMC3A is the best mode of PMCxA to apply as an antiprotein adsorption coating agent..
3. Kazuki Fukushima, Yuto Inoue, Yuta Haga, Takayuki Ota, Kota Honda, Chikako Sato, Masaru Tanaka, Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion
A Promising Material for Resorbable Vascular Grafts and Stents, Biomacromolecules, 10.1021/acs.biomac.7b01210, 18, 11, 3834-3843, 2017.11, [URL], We developed a biodegradable polycarbonate that demonstrates antithrombogenicity and vascular cell adhesion via organocatalytic ring-opening polymerization of a trimethylene carbonate (TMC) analogue bearing a methoxy group. The monoether-tagged polycarbonate demonstrates a platelet adhesion property that is 93 and 89% lower than those of poly(ethylene terephthalate) and polyTMC, respectively. In contrast, vascular cell adhesion properties of the polycarbonate are comparable to those controls, indicating a potential for selective cell adhesion properties. This difference in the cell adhesion property is well associated with surface hydration, which affects protein adsorption and denaturation. Fibrinogen is slightly denatured on the monoether-tagged polycarbonate, whereas fibronectin is highly activated to expose the RGD motif for favorable vascular cell adhesion. The surface hydration, mainly induced by the methoxy side chain, also contributes to slowing the enzymatic degradation. Consequently, the polycarbonate exhibits decent blood compatibility, vascular cell adhesion properties, and biodegradability, which is promising for applications in resorbable vascular grafts and stents..
4. Kazuhiro Sato, Shingo Kobayashi, Asuka Sekishita, Miyuki Wakui, Masaru Tanaka, Synthesis and Thrombogenicity Evaluation of Poly(3-methoxypropionic acid vinyl ester)
A Candidate for Blood-Compatible Polymers, Biomacromolecules, 10.1021/acs.biomac.7b00221, 18, 5, 1609-1616, 2017.05, [URL], A poly(vinyl acetate) derivative, poly(3-methoxypropionic acid vinyl ester) (PMePVE), was synthesized to develop a new candidate for blood compatible polymers. The monomer MePVE was synthesized by a simple two-step reaction, and then the MePVE was polymerized via free radical polymerization to obtain PMePVE. Human platelet adhesion tests were performed to evaluate the thrombogenicity, and the platelet adhesion was suppressed on the PMePVE-coated substrate. To determine the expression of the nonthrombogenicity of the PMePVE, the plasma protein adsorption and a conformationally altered state of fibrinogen were analyzed by a microBCA assay and enzyme-linked immunosorbent assay. The adsorption and denaturation of the plasma proteins were inhibited on the PMePVE; thus, PMePVE exhibited blood compatibility. A distinctive hydration water structure in the nonthrombogenic polymer, intermediate water (IW), was observed in the hydrated PMePVE by differential scanning calorimetry analysis. The nonthrombogenicity of PMePVE is considered to be brought about by the presence of IW..
5. Daiki Murakami, Shingo Kobayashi, Masaru Tanaka, Interfacial Structures and Fibrinogen Adsorption at Blood-Compatible Polymer/Water Interfaces, ACS Biomaterials Science and Engineering, 10.1021/acsbiomaterials.6b00415, 2, 12, 2122-2126, 2016.12, [URL], The interfacial structures of a blood-compatible polymer, poly(2-methoxyethyl acrylate) (PMEA), and several analogues were investigated by atomic force microscopy (AFM). The blood-compatible polymers exhibited nanometer-scale protrusions that spontaneously and homogeneously formed at polymer/water and polymer/phosphate-buffered saline interfaces. AFM observation also revealed that fibrinogen adsorption occurred locally on the protrusions rather than uniformly at the interface, with the regions adjacent to the protrusions apparently preventing the adsorption of fibrinogen. The formation of these interfacial structures may be due to in-plane microphase separation of polymer and water at the interface..
6. Takashi Hoshiba, Eri Nemoto, Kazuhiro Sato, Hiroka Maruyama, Chiho Endo, Masaru Tanaka, Promotion of Adipogenesis of 3T3-L1 Cells on Protein Adsorption-Suppressing Poly(2-methoxyethyl acrylate) Analogs, Biomacromolecules, 10.1021/acs.biomac.6b01340, 17, 11, 3808-3815, 2016.11, [URL], Stem cell differentiation is an important issue in regenerative medicine and tissue engineering. It has been reported that cell shape is one of the factors that determine the lineage commitment of mesenchymal stem cells (MSCs). Therefore, the substrates have been developed to control their shapes. Recently, we found that poly(2-methoxyethyl acrylate) (PMEA) analogs can control tumor cell shape through the alteration of protein adsorption. Here, the adipogenesis of an adipocyte-progenitor cell, 3T3-L1 cells, was attempted; adipogenesis was to be regulated by surfaces coated with PMEA analogs through the control of their shape. The adipogenesis of 3T3-L1 cells was promoted on the surfaces coated with PMEA and its analogs, PMe3A and PMe2A. Evident focal adhesions were hardly observed on these surfaces, suggesting that integrin signal activation was suppressed. Additionally, actin assembly and cell spreading were suppressed on these surfaces. Therefore, the surfaces coated with PMEA analogs are expected to be suitable surfaces to regulate adipogenesis through the suppression of cell spreading. Additionally, we found that protein adsorption correlated with actin assembly and adipogenesis..
7. Kohei Osawa, Shingo Kobayashi, Masaru Tanaka, Synthesis of Sequence-Specific Polymers with Amide Side Chains via Regio-/Stereoselective Ring-Opening Metathesis Polymerization of 3-Substituted cis-Cyclooctene, Macromolecules, 10.1021/acs.macromol.6b01829, 49, 21, 8154-8161, 2016.11, [URL], Highly regio-/stereoregular (trans-head-to-tail) polymers with amide side chains on every eighth backbone carbon were successfully synthesized by ring-opening metathesis polymerization (ROMP) of 3-substituted cis-cyclooctene (3RCOE) using Grubbs second-generation catalyst (G2). Regioregular linear ethylene-acrylamide copolymers were also prepared via hydrogenation of the obtained poly(3RCOE)s. The thermal properties and solubility of the obtained polymers were strongly influenced by the presence of amide hydrogen in the side chains, the presence of unsaturated bonds in the carbon backbone, and the side chain density. The presence of amide hydrogen in the side chains resulted in the formation of crystalline polymers and the lack of solubility of these polymers in common organic solvents. In contrast, the absence of amide hydrogen in the side chains led to the formation of amorphous polymers exhibiting good solubility in common organic solvents, and decreasing values of Tg were observed for amorphous polymers as a result of the saturation of double bonds in the backbone via hydrogenation..
8. Shingo Kobayashi, Kousaku Fukuda, Maiko Kataoka, Masaru Tanaka, Regioselective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes with Ether Side Chains., Macromolecules, 10.1021/acs.macromol.6b00273, 49, 7, 2493-2501, 2016.04, [URL], Allyl-substituted cyclooctenes with ether side-chains [methoxy, methoxy-terminated oligo(ethylene glycol)s, and tetrahydrofurfuryloxy group] were prepared as monomers and polymerized by ring-opening metathesis polymerization (ROMP) using Grubbs second-generation catalyst. In all cases, the ROMP of allyl-substituted monomers proceeded in a regio- and stereoselective manner to afford polymers with remarkably high head-to-tail regioregularity with high trans-stereoregularity. The regio- and stereoregularity of polymers were affected by the bulkiness of the substituent, and the ROMP of tetrahydrofurfuryloxy-substituted cyclooctene exhibited nearly perfect regio- (head-to-tail = 99%) and stereoselectivity (trans-double bond = 99%). Chemical hydrogenation of obtained polymers afforded model poly(ethylene-co-vinyl ether)s with precisely placed ether branches on every eighth backbone carbon. Differential scanning calorimetry (DSC) was used to study the thermal properties, and the hydrophilicity of polymers was evaluated by water contact angle measurement. The surface hydrophilicity of unsaturated polymers was effectively tuned by changing the side-chain length of oligo(ethylene glycol) groups while maintaining the hydrophobic character unchanged for saturated versions..
9. Takashi Hoshiba, Takayuki Otaki, Eri Nemoto, Hiroka Maruyama, Masaru Tanaka, Blood-Compatible Polymer for Hepatocyte Culture with High Hepatocyte-Specific Functions toward Bioartificial Liver Development, ACS applied materials & interfaces, 10.1021/acsami.5b05210, 7, 32, 18096-18103, 2015.08, [URL], The development of bioartificial liver (BAL) is expected because of the shortage of donor liver for transplantation. The substrates for BAL require the following criteria: (a) blood compatibility, (b) hepatocyte adhesiveness, and (c) the ability to maintain hepatocyte-specific functions. Here, we examined blood-compatible poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrahydrofurfuryl acrylate) (PTHFA) (PTHFA) as the substrates for BAL. HepG2, a human hepatocyte model, could adhere on PMEA and PTHFA substrates. The spreading of HepG2 cells was suppressed on PMEA substrates because integrin contribution to cell adhesion on PMEA substrate was low and integrin signaling was not sufficiently activated. Hepatocyte-specific gene expression in HepG2 cells increased on PMEA substrate, whereas the expression decreased on PTHFA substrates due to the nuclear localization of Yes-associated protein (YAP). These results indicate that blood-compatible PMEA is suitable for BAL substrate. Also, PMEA is expected to be used to regulate cell functions for blood-contacting tissue engineering..
10. Taito Sekine, Yusaku Tanaka, Chikako Sato, Masaru Tanaka, Tomohiro Hayashi, Evaluation of Factors To Determine Platelet Compatibility by Using Self-Assembled Monolayers with a Chemical Gradient, Langmuir, 10.1021/acs.langmuir.5b01216, 31, 25, 7100-7105, 2015.06, [URL], Intercorrelation among surface chemical composition, packing structure of molecules, water contact angles, amounts and structures of adsorbed proteins, and blood compatibility was systematically investigated with self-assembled monolayers (SAMs) with continuous chemical composition gradients. The SAMs were mixtures of two thiols: n-hexanethiol (hydrophobic and protein-adsorbing) and hydroxyl-tri(ethylene glycol)-terminated alkanethiol (hydrophilic and protein-resistant) with continuously changing mixing ratios. From the systematic analyses, we found that protein adsorption is governed both by sizes of proteins and hydrophobic domains of the substrate. Furthermore, we found a clear correlation between adsorption of fibrinogen and adhesion of platelets. Combined with the results of surface force measurements, we found that the interfacial behavior of water molecules is profoundly correlated with protein resistance and antiplatelet adhesion. On the basis of these results, we conclude that the structuring of water at the SAM-water interface is a critical factor in this context..
11. Toyoaki Hirata, Hisao Matsuno, Daisuke Kawaguchi, Tomoyasu Hirai, Norifumi L. Yamada, Masaru Tanaka, Keiji Tanaka, Effect of local chain dynamics on a bioinert interface, Langmuir, 10.1021/acs.langmuir.5b00258, 31, 12, 3661-3667, 2015.03, [URL], Although many kinds of synthetic polymers have been investigated to construct blood-compatible materials, only a few have achieved success. To establish molecular designs for blood-compatible polymers, the chain structure and dynamics at the water interface must be understood using solid evidence as the first bench mark. Here we show that polymer dynamics at the water interface impacts on structure of the interfacial water, resulting in a change in protein adsorption and of platelet adhesion. As a particular material, a blend composed of poly(2-methoxyethyl acrylate) (PMEA) and poly(methyl methacrylate) was used. PMEA was segregated to the water interface. While the local conformation of PMEA at the water interface was insensitive to its molecular weight, the local dynamics became faster with decreasing molecular weight, resulting in a disturbance of the network structure of waters at the interface. This leads to the extreme suppression of protein adsorption and platelet adhesion..
12. Shigeaki Morita, Masaru Tanaka, Effect of sodium chloride on hydration structures of PMEA and P(MPC- R -BMA), Langmuir, 10.1021/la502550d, 30, 35, 10698-10703, 2014.09, [URL], The hydration structures of two different types of biomaterials, i.e., poly(2-methoxyethyl acrylate) (PMEA) and a random copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate (P(MPC-r-BMA)), were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy. The effects of the addition of sodium chloride to liquid water in contact with the surfaces of the polymer films were examined. The neutral polymer of PMEA was easily dehydrated by NaCl addition, whereas the zwitterionic polymer of P(MPC-r-BMA) was hardly dehydrated. More specifically, nonfreezing water having a strong interaction with the PMEA chain and freezing bound water having an intermediate interaction were hardly dehydrated by contacting with normal saline solution, whereas freezing water having a weak interaction with the PMEA chain was readily dehydrated. In contrast, freezing water in P(MPC-r-BMA) is exchanged for the saline solution contacting with the material surface without dehydration..
13. Takashi Hoshiba, Mayo Nikaido, Masaru Tanaka, Characterization of the attachment mechanisms of tissue-derived cell lines to blood-compatible polymers, Advanced Healthcare Materials, 10.1002/adhm.201300309, 3, 5, 775-784, 2014.06, [URL], Recent advances in biomedical engineering require the development of new types of blood-compatible polymers that also allow non-blood cell attachment for the isolation of stem cells and circulating tumor cells (CTCs) from blood and for the development of artificial organs for use under blood-contact conditions. Poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrafurfuryl acrylate) (PTHFA) were previously identified as blood-compatible polymers. Here, it is demonstrated that cancer cells can attach to the PMEA and PTHFA substrates, and the differences in the attachment mechanisms to the PMEA and PTHFA substrates between cancer cells and platelets are investigated. It is also found that the adsorption-induced deformation of fibrinogen, which is required for the attachment and activation of platelets, does not occur on the PMEA and PTHFA substrates. In contrast, fibronectin is deformed on the PMEA and PTHFA substrates. Therefore, it is concluded that cancer cells and not platelets can attach to the PMEA and PTHFA substrates based on this protein-deformation difference between these substrates. Moreover, it is observed that cancer cells attach to the PMEA substrate via both integrin-dependent and -independent mechanisms and attach to the PTHFA substrate only through an integrin-dependent mechanism. It is expected that PMEA and PTHFA will prove useful for blood-contact biomedical applications..
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. M. Tanaka, Design of Functional Biomaterials: Intermediate Water Concept for Advanced Medical Devices, Nanosciences & Nanoengineering Institute, Nano Seminar, 2022.03.
2. 田中 賢, “血中循環がん細胞のラベルフリー分離・回収技術~医療機器開発からバイオ界面水制御まで~, 2021年度 第1回SCRUM-Japan MONSTAR-SCREEN合同Web会議, 2021.05.
3. M. Tanaka, Design of soft-biomaterials based on the interfacial water structure for
advanced medical devices, SOCAIETY FOR BIOMATERIALS 2019 ANNUAL MEETING & EXPOSITION(SFB 2019), 2019.04.
4. 田中 賢, 生体適合性材料に関する発表多数, 高分子学会, 2018.04.
特許出願・取得
特許出願件数  6件
特許登録件数  1件
その他の優れた研究業績
2023.05, 丸善石油化学株式会社と共同研究を行っていた生体親和性高分子の製品化に成功した。.
2022.12, 三菱ケミカルグループと共同研究を行っていた生体親和性に優れた樹脂が製品化された。化学工業日報(2022年12月8日朝刊1面)に掲載された。.
2021.11, 韓国との国際共同研究により、体内に埋め込み可能なフレキシブルマイクロニードルセンサーの開発に成功した。Science Advances誌に掲載された。.
2021.11, 生体親和性材料の設計と合成、医療製品への展開実績が評価され、日本バイオマテリアル学会学会賞を受賞した。.
2021.12, 研究開発に関わったX-Coating (PMEA) ECMOが第5回日本医療研究開発大賞 内閣総理大臣賞を受賞した。.
2020.10, 最先端・次世代研究開発⽀援プログラム(NEXT)の 追跡評価が公開され、当研究室の田中教授が行った研究が、事後評価が特に優れていた課題として取り上げられた。
ライフイノベーション分野から4名が選ばれ、その1人に特に優れた成果が得られた将来有望な最重要研究・研究者として選ばれた。

※NEXTとは、将来、世界をリードすることが期待される潜在的可能性を持った若⼿、⼥性及び地域の研究機関等で活躍する研究者の⽀援を⽬的としたプログラムです。

最先端・次世代研究開発⽀援プログラム(NEXT) 追跡評価報告書 2020年7月16日
内閣府政策統括官 (科学技術イノベーション担当)
https://www8.cao.go.jp/cstp/sentan/jisedai/tsuiseki/next_summary.pdf
.
2020.05, 当研究室が開発にかかわった材料・製品に関する記事が日経新聞に掲載された。
“人工肺「エクモ」の血栓、発生原因を解明 東大教授ら”, 日本経済新聞電子版, 2020年05月10日. “ネットニュース”
“人工肺の血栓原因解明 コロナ重症患者治療の弱点”, 日本経済新聞, 2020年05月11日. “新聞”.
2019.08, 製品化された材料が以下の記事として掲載された。生体適合性ポリマー 中間水で血液凝固抑制, 化学工業日報, 2019年08月20日.
2019.06, 日刊工業新聞 2019.6.25
血液中から転移がんを選択的に吸着・回収し、診断を行うデバイス開発を医学部と共同で進めている。
液体生検用の材料としての製品化を行うブレベンチャーの準備を進めている。.
2018.07, 生体親和性に優れた新規高分子の製品化を行い、RX-6-GBシリーズおよびRX-6-GAシリーズとして、株式会社日本触媒より製品販売が開始された。本高分子は汚れ防止(ファウリング抑制)効果にも優れており、医療のみならず環境分野への展開が期待される。.
2016.10, 医療製品の商品化(人工心肺、ステントなど).
学会活動
所属学会名
高分子学会
日本化学会
日本再生医療学会
日本人工臓器学会
日本バイオマテリアル学会
応用物理学会
日本再生医療学会
応用物理学会
日本人工臓器学会
日本バイオマテリアル学会
日本化学会
高分子学会
学協会役員等への就任
2018.06~2025.05, International Conference on Nanosciences and Nanotechnologies, Organizing Committee.
2021.06~2026.05, IUPAC Polymer Division Committee, The members of the Nominating Committee.
2022.04~2024.03, 高分子学会医用高分子研究会運営委員長, 医用高分子研究会運営委員長.
2022.04~2024.03, 日本バイオマテリアル学会常任理事, 理事.
2019.04~2022.03, 高分子学会医用高分子研究会, 幹事.
2019.04~2022.03, 日本バイオマテリアル学会, 理事.
学会大会・会議・シンポジウム等における役割
2021.12.13~2021.12.15, Materials Research Meeting 2021, オーガナイザー.
2021.10.19~2021.10.21, 日本化学会化学フェスタ, オーガナイザー.
2022.03.23~2022.03.23, 第103春季年会イノベーション協奏プログラム(CIP)T3.未来につなげ!ヘルスケアイノベーション A未来の医療機器・ライフサイエンスを支えるスマートマテリアル, オーガナイザー.
2022.02.04~2022.02.04, 第2回水圏機能材料産学連携フォーラム, オーガナイザー.
2021.03.18~2021.03.18, 2021 2nd International Conference on Materials Science and Engineering, オーガナイザー.
2019.12.27~2019.12.27, 2019 International conference on Materials Science and Engineering, オーガナイザー.
2020.12.08~2020.12.10, Materials Research Meeting 2020, セッションオーガナイザー.
2021.02.04~2021.02.04, 第1回水圏機能材料産学連携フォーラム, オーガナイザー.
2021.03.19~2021.03.22, 第101春季年会イノベーション協奏プログラム(CIP)T3.未来につなげ!ヘルスケアイノベーション A未来の医療機器・ライフサイエンスを支えるスマートマテリアル, セッションオーガナイザー.
2020.01.07~2020.01.07, The 100th anniversary of the birth of Professor Teiji Tsuruta, 企画幹事.
2015.10~2015.10.20, 高分子学会, 座長(Chairmanship).
2015.10~2015.10.20, 高分子学会, 座長(Chairmanship).
2015.10~2015.10.20, 日本化学会化学フェスタ, 企画委員.
2015.10~2015.10.20, 高分子学会, 特別シンポジウム企画.
学会誌・雑誌・著書の編集への参加状況
2019.06~2023.06, Biomaterials Advances, 国際, 編集委員.
2019.06~2023.06, International Journal of Molecular Science, 国際, 編集委員.
2015.10~2015.10, 生体適合性制御と要求特性掌握から実践する高分子バイオマテリアルの設計・開発戦略-モノマー(いち)からデザインするバイオインターフェイスと上市までの道筋-, 国内, 編集委員長.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2022年度 21  25  58 
2021年度 18  20  49 
2020年度 18  10  33 
2015年度 24  40  10  77 
その他の研究活動
海外渡航状況, 海外での教育研究歴
Max Planck Institute for Intelligent Systems, Technical University of Denmark, Cambridge University, Germany, Denmark, UnitedKingdom, 2015.10~2015.10.
外国人研究者等の受入れ状況
2019.10~2022.09, 1ヶ月以上, Bangladesh, 外国政府・外国研究機関・国際機関.
2021.01~2022.03, 2週間以上1ヶ月未満, Ceramics and Building materials Department, National Research Centre, Egypt, 日本学術振興会.
2019.06~2022.11, 1ヶ月以上, カリフォルニア大学バークレー校, UnitedStatesofAmerica.
2019.01~2023.03, Denmark.
2015.10~2015.10, UnitedKingdom.
受賞
Kawasaki Deep Tech Accelerator 賞, 2021.08.
JHeC 2022 アイディアコンテスト部門ファイナリスト 優秀賞, 2022.01.
日本バイオマテリアル学会 学会賞, 日本バイオマテリアル学会, 2021.07.
優秀賞, 日本対がん協会福岡支部 がん研究助成金, 2021.03.
奨励賞, 第30回日本MRS年次大会, 2020.12.
Award For Poster Presentation, China-Japan Biopolymer Symposium (1), 2019.11.
Award For Poster Presentation, China-Japan Biopolymer Symposium, 2019.11.
第51回市村学術賞功績賞, 公益財団法人 市村清新技術財団, 2019.04.
市村学術賞功績賞, 2019.04.
第28回日本MRS年次大会奨励賞, MRS, 2018.12.
Biomaterials lnternatiomal 2017 Best Poster Paper Award, Biomaterials lnternatiomal , 2017.08.
International Association of Advanced Materials Scientists Award for the year 2016, 2016.04.
International Association of Advanced Materials Scientists Award for the year 2016 (IAAM SA-2016), International Association of Advanced Materials, 2016.03.
9th World Biomaterials Congress Poster Award, 2012.06.
JSPN-NRF Asian Science Seminar Seoul, Encouraging Prize, 2012.02.
高分子学会旭化成賞, 高分子学会, 2011.10.
高分子学会旭化成賞, 2011.09.
日本バイオマテリアル学会科学奨励賞, 2009.11.
AAP Winner, 米国歯周病学会, 2009.09.
IUMRS-ICA2008 and MRS-J Encouraging Prize, 2008.12.
PMI2 Connect-Research Co-operation Award 2008 from British Council, 2008.06.
Nano tech 2007 国際ナノテクノロジー総合展・技術会議 Nano tech 大賞 バイオテクノロジー部門, 2007.12.
日本人工臓器学会第44回オリジナル賞, 2007.11.
日本表面科学会 平成19年度論文賞, 2007.11.
日本化学会若い世代の特別講演会賞, 2007.2.25, 2007.07.
日刊工業新聞第2回ものづくり連携大賞, 2007.02.
日本化学会北海道支部奨励賞, 2007.02.
高分子研究奨励賞, 2005.05.
日本再生医療学会総会「優秀演題賞」, 2004.06.
第83日本化学会春季年会2003 「講演奨励賞」受賞, 2003.03.
応用物理学会講演奨励賞, 2002.09.
第81日本化学会春季年会2002 「講演奨励賞」受賞, 2002.03.
Korea Japan Joint Forum KJF2001 Organic Materials for Electronics and Photonics, Best Poster Award, 2001.09.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2022年度~2025年度, 基盤研究(A), 代表, 血中循環がん細胞のラベルフリー分離・回収技術の創製.
2019年度~2023年度, 新学術領域研究, 代表, 水圏機能材料のバイオ・環境機能開拓.
2017年度~2019年度, 基盤研究(B), 代表, 再閉塞抑制能と癌細胞増殖抑制能を有する消化器ステントの基盤技術創製.
2019年度~2023年度, 新学術領域研究, 1
.
2017年度~2019年度, 挑戦的研究(萌芽), 1
.
日本学術振興会への採択状況(科学研究費補助金以外)
2011年度~2014年度, 最先端・次世代研究開発支援プログラム, 生体親和性材料の設計指針の構築.
学内資金・基金等への採択状況
2021年度~2022年度, GAP NEXT, 代表, ー.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。