Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Matsuda Taito Last modified dateļ¼š2023.11.28

Lecturer / Department of Stem Cell Biology and Medicine / Faculty of Medical Sciences


Papers
1. Matsuda T * (co-corresponding author)., Irie T., Katsurabayashi S., Hayashi Y., Nagai T., Hamazaki N., Adefuin AMD., Miura F., Ito T., Kimura H., Shirahige K., Takeda T., Iwasaki K., Imamura T. & Nakashima K*., Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion, Neuron, 101, 472-485, 2019.01, Minimal sets of transcription factors can directlyreprogram somatic cells into neurons. However,epigenetic remodeling during neuronal reprogram-ming has not been well reconciled with transcrip-tional regulation. Here we show that NeuroD1achieves direct neuronal conversion from mouse mi-croglia bothin vitroandin vivo. Exogenous NeuroD1initially occupies closed chromatin regions associ-ated with bivalent trimethylation of histone H3 atlysine 4 (H3K4me3) and H3K27me3 marks in micro-glia to induce neuronal gene expression. These re-gions are resolved to a monovalent H3K4me3 markat later stages of reprogramming to establish theneuronal identity. Furthermore, the transcriptionalrepressorsScrt1andMeis2are induced as NeuroD1target genes, resulting in a decrease in the expres-sion of microglial genes. In parallel, the microglialepigenetic signature in promoter and enhancerregions is erased. These findings reveal NeuroD1pioneering activity accompanied by global epige-netic remodeling for two sequential events: onset ofneuronal property acquisition and loss of the micro-glial identity during reprogramming..
2. Taito Matsuda, Kinichi Nakashima, Bidirectional communication between the innate immune and nervous systems for homeostatic neurogenesis in the adult hippocampus, Neurogenesis, 10.1080/23262133.2015.1081714, 2, 1, 2015.01, A population of proliferating neural stem/progenitor cells located in the subgranular zone of the adult hippocampal dentate gyrus (DG) gives rise to new neurons continuously throughout life, and this process is referred to as adult hippocampal neurogenesis. To date, it has generally been accepted that impairments of adult hippocampal neurogenesis resulting from pathological conditions such as stress, ischemia and epilepsy lead to deficits in hippocampus-dependent learning and memory tasks. Recently, we have discovered that microglia, the major immune cells in the brain, attenuate seizure- induced aberrant hippocampal neurogenesis to withstand cognitive decline and recurrent seizure. In that study, we further showed that Toll-like receptor 9, known as a pathogen-sensing receptor for innate immune system activation, recognizes self-DNA derived from degenerating neurons to induce TNF-a production in the microglia after seizure, resulting in inhibition of seizure-induced aberrant neurogenesis. Our findings provide new evidence that interaction between the innate immune and nervous systems ensures homeostatic neurogenesis in the adult hippocampus and should pave the way for the development of new therapeutic strategies for neurological diseases including epilepsy..
3. Chai MuhChyi, Berry Juliandi, Taito Matsuda, Kinichi Nakashima, Epigenetic regulation of neural stem cell fate during corticogenesis, International Journal of Developmental Neuroscience, 10.1016/j.ijdevneu.2013.02.006, 31, 6, 424-433, 2013.10, The cerebral cortex comprises over three quarters of the brain, and serves as structural basis for the sophisticated perceptual and cognitive functions. It develops from common multipotent neural stem cells (NSCs) that line the neural tube. Development of the NSCs encompasses sequential phases of progenitor expansion, neurogenesis, and gliogenesis along with the progression of developmental stages. Interestingly, NSCs steadfastly march through all of these phases and give rise to specific neural cell types in a temporally defined and highly predictable manner. Herein, we delineate the intrinsic and extrinsic factors that dictate the progression and tempo of NSC differentiation during cerebral cortex development, and how epigenetic modifications contribute to the dynamic properties of NSCs..