九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
太田 真理(おおたしんり) データ更新日:2024.06.03

准教授 /  人文科学研究院 文学部門


主な研究テーマ
理論言語学と脳科学実験による言語の神経基盤の解明
キーワード:言語脳科学、神経言語学、心理言語学
2016.10.
従事しているプロジェクト研究
OS言語からみた「言語の語順」と「思考の順序」に関するフィールド認知脳科学的研究
2021.10~2025.03, 代表者:小泉政利, 東北大学, 東北大学.
経頭蓋電気刺激法と脳波計測を統合した言語リハビリテーション技術の確立
2022.11~2024.10, 代表者:太田真理, 九州大学, 九州大学.
経頭蓋電気刺激と脳波計測を統合した外国語学習の神経基盤の解明
2022.11~2023.11, 代表者:太田真理, 九州大学, 九州大学.
人間の記号処理能力の基盤を探る-言語の形式と意味をつなぐ認知神経システムの解明
2023.04~2028.03, 代表者:酒井弘, 早稲田大学, 早稲田大学.
脳磁図を用いた非侵襲的な脳機能マッピング法の開発
2023.07~2024.03, 代表者:太田真理, 九州大学.
経頭蓋時間干渉刺激による難読症のリハビリテーション技術の開発
2024.04~2025.03, 代表者:太田真理, 九州大学, 九州大学.
経頭蓋時間干渉刺激と脳機能イメージングによる脳の非侵襲的可塑性誘導技術の確立
2024.04~2026.03, 代表者:太田真理, 九州大学, 九州大学.
高密度経頭蓋時間干渉刺激法を用いた言語の獲得と喪失の神経機構の解明
2024.04~2027.03, 代表者:太田真理, 九州大学, 九州大学.
脳活動の変化は言語学習を促進するか?―脳波フィードバックによる検討―
2021.07~2025.03, 代表者:太田真理, 九州大学, 九州大学.
⾔語学・情報科学・数理科学を融合した脳内⾔語処理過程の実証
2019.04~2023.03, 代表者:太田真理, 九州大学, 九州大学.
理論・モデル・実験を統合した言語の神経基盤の解明
2019.04~2024.03, 代表者:太田真理, 九州大学, 九州大学.
言語の起源・進化研究の理論的枠組み
2017.06~2023.03, 代表者:藤田耕司, 京都大学, 京都大学.
動詞の形態統語構造を処理する神経基盤解明:脳磁図利用した日本語使役動詞の研究
2017.02~2018.12, 代表者:太田真理, 九州大学大学院人文科学研究院, 九州大学大学院人文科学研究院(日本).
日本語とカクチケル語の比較研究による言語の普遍性と多様性の神経基盤の解明
2015.04~2017.03, 代表者:太田真理, 九州大学.
研究業績
主要著書
1. Jun Nakajima, Shinri Ohta, (Dis)similarities between semantically transparent and lexicalized nominal suffixation in Japanese: An ERP study using a masked priming paradigm, In Koizumi, M. (Ed.), Issues in Japanese Psycholinguistics from Comparative Perspectives: Interaction between Linguistic and Nonlinguistic Factors (Vol. 2) (The Mouton-NINJAL Library of Linguistics Series), De Gruyter Mouton, https://doi.org/10.1515/9783110778939-008, 2023.11.
主要原著論文
1. Koki Yamaguchi, Shinri Ohta, Dissociating the processing of empty categories in raising and control sentences: A self-paced reading study in Japanese, Frontiers in Language Sciences, 10.3389/flang.2023.1138749, 2, 1138749-1138749, 2023.06, [URL], Introduction: Theoretical linguistics has proposed different types of empty categories (ECs), i.e., unpronounced words with syntactic characteristics. ECs are a key to elucidating the computational system of syntax, algorithms of language processing, and their neural implementation. Here we examined the distinction between raising and control sentences in Japanese and whether ECs are psychologically real.
Methods: We recruited 254 native speakers of Japanese in the present internet-based experiment. We used a self-paced reading and a probe recognition priming technique. To investigate whether raising and control sentences have different ECs (i.e., Copy and PRO) and whether these ECs cause a reactivation effect, behavioral data were analyzed using linear mixed-effects models.
Results: We found two striking results. First, we demonstrate that the reading times of raising and control sentences in Japanese were better explained by the linear mixed-effects model considering the differences of ECs, i.e., Copy and PRO. Secondly, we found a significant reactivation effect for raising and control sentences, which have ECs, and reflexive sentences without ECs. These results indicate that ECs are processed similarly to reflexive pronouns (e.g., himself ).
Discussion: Based on these results, we conclude that raising and control sentences in Japanese have different ECs, i.e., Copy and PRO, and that ECs have psychological reality. Our results demonstrate that behavioral experiment based on theoretical linguistics, which is the first step for developing linking hypotheses connecting theoretical linguistics and experimental neuroscience, is indeed necessary for testing hypotheses proposed in theoretical linguistics..
2. 太田真理, 岩下千咲, 子音の音韻素性がオノマトペの音象徴に与える影響:SD法と因子分析を用いた研究, 音韻研究, 26, 43-50, 2023.03, Previous studies on sound symbolism of Japanese onomatopoeia have reported that the phonological feature [±voice] of a word-onset consonant causes contrastive meanings/impressions. However, whether or not [±voice] of word-internal consonants, as well as other phonological features, produces different meanings/impressions has remained unclear. Using semantic differential and factor analysis on Japanese onomatopoeic words, we examined the effects of word-internal consonants, as well as of word-onset consonants, on sound symbolism. We replicated previous findings, showing that the phonological feature [±voice] of the word-onset consonants caused sound symbolism related to psychological state (e.g. tense/relaxed), movement (e.g. heavy/light), shape (e.g. large/small), and sound (e.g. noisy/quiet). We also found for the first time that [±voice] of the word-internal consonants made contrastive meanings/impressions related to movement, shape, and sound. Furthermore, [±sonorant] of both word-onset and word-internal consonants caused sound symbolism of the onomatopoeia related to psychological state and sound. Our results demonstrate that the phonological features of [±voice] and [±sonorant], which produce contrastive meanings/impressions, are crucial for sound symbolism in onomatopoeia..
3. Kyohei Tanaka, Isso Nakamura, Shinri Ohta, Naoki Fukui, Mihoko Zushi, Hiroki Narita, Kuniyoshi L. Sakai, Merge-generability as the key concept of human language: Evidence from neuroscience, Frontiers in Psychology, https://doi.org/10.3389/fpsyg.2019.02673, 10, 2673, 2019.11, [URL].
4. Takahiro Osada, Shinri Ohta, Akitoshi Ogawa, Masaki Tanaka, Akimitsu Suda, Koji Kamagata, Masaaki Hori, Shigeki Aoki, Yasushi Shimo, Nobutaka Hattori, Takahiro Shimizu, Hiroyuki Enomoto, Ritsuko Hanajima, Yoshikazu Ugawa, Seiki Konishi, An essential role of the intraparietal sulcus in response inhibition predicted by parcellation-based network, Journal of Neuroscience, 10.1523/JNEUROSCI.2244-18.2019, 39, 13, 2509-2521, 2019.01, [URL], The posterior parietal cortex (PPC) features close anatomical and functional relationships with the prefrontal cortex. However, the necessity of the PPC in executive functions has been questioned. The present study used the stop-signal task to examine response inhibition, an executive function that inhibits prepotent response tendency. The brain activity and resting-state functional connectivity were measured to analyze a parcellation-based network that was aimed at identifying a candidate PPC region essential for response inhibition in humans. The intraparietal sulcus (IPS) was activated during response inhibition and connected with the inferior frontal cortex and the presupplementary motor area, the two frontal regions known to be necessary for response inhibition. Next, transcranial magnetic stimulation (TMS) was used to test the essential role of the IPS region for response inhibition. TMS over the IPS region prolonged the stop-signal reaction time (SSRT), the standard behavioral index used to evaluate stopping performance, when stimulation was applied 30–0 ms before stopping. On the contrary, stimulation over the temporoparietal junction region, an area activated during response inhibition but lacking connectivity with the two frontal regions, did not show changes in SSRT. These results indicate that the IPS identified using the parcellation-based network plays an essential role in executive functions..
5. Kyohei Tanaka, Shinri Ohta, Ryuta Kinno, Kuniyoshi L. Sakai, Activation changes of the left inferior frontal gyrus for the factors of construction and scrambling in a sentence, Proceedings of the Japan Academy, Series B, 10.2183/pjab.93.031, 93, 7, 511-522, 2017.07, [URL].
6. Shinri Ohta, Masatoshi Koizumi, Kuniyoshi L. Sakai, Dissociating Effects of Scrambling and Topicalization within the Left Frontal and Temporal Language Areas: An fMRI Study in Kaqchikel Maya, Frontiers in Psychology, 10.3389/fpsyg.2017.00748, 8, 748, 1-14, 2017.05, [URL].
7. 太田 聡, 太田 真理, 連濁の生起率に基づく日本語複合語の分類――連濁データベースによる研究――, 国立国語研究所論集, 10.15084/00000814, 10, 179-191, 2016.01, [URL].
8. Ryuta Kinno, Shinri Ohta, Yoshihiro Muragaki, Takashi Maruyama, Kuniyoshi L. Sakai, Left frontal glioma induces functional connectivity changes in syntax-related networks, SPRINGERPLUS, 10.1186/s40064-015-1104-6, 4, 317, 1-6, 2015.07, [URL].
9. 太田 真理, 音韻的・意味的要因が連濁に与える影響:連濁データベースとロジスティック回帰分析を利用した研究, 音韻研究, 18, 85-92, 2015.03.
10. Ryuta Kinno, Shinri Ohta, Yoshihiro Muragaki, Takashi Maruyama, Kuniyoshi L. Sakai, Differential reorganization of three syntax-related networks induced by a left frontal glioma, BRAIN, 10.1093/brain/awu013, 137, 4, 1193-1212, 2014.04, [URL].
11. Shinri Ohta, Naoki Fukui, Kuniyoshi L. Sakai, Syntactic Computation in the Human Brain: The Degree of Merger as a Key Factor, PLOS ONE, 10.1371/journal.pone.0056230, 8, e56230, 1-16, 2013.02, [URL].
主要総説, 論評, 解説, 書評, 報告書等
1. Shinri Ohta, Why Only Us: Language and Evolution, Review By Berwick, Robert C. and Noam Chomsky, MIT Press, Cambridge, MA, 2016, vii+224pp, English Linguistics, 2020.09.
2. Shinri Ohta, Naoki Fukui, Kuniyoshi L. Sakai, Computational principles of syntax in the regions specialized for language: Integrating theoretical linguistics and functional neuroimaging, Frontiers in Behavioral Neuroscience, 10.3389/fnbeh.2013.00204, 2013.12, [URL].
主要学会発表等
1. Shinri Ohta, Investigating the neural basis of language through non-invasive brain stimulation, SNU Workshop on Empirical and Laboratory Linguistics 2023, 2024.01.
2. 太田 真理, 脳科学と言語学から見た「文」学:言語脳科学への誘い, 日本英文学会中国四国支部第75回大会, 2023.10.
3. 太田真理, 理論言語学と実験脳科学で言語の脳内メカニズムを解明する, 同志社大学文化情報学研究科共通シンポジウム:言語研究の方法:理論と実験, 2022.11.
4. 太田真理, 脳科学実験で言語理論を実証する!, 山口大学時間学研究所時間学特別セミナー, 2022.11.
5. Shinri Ohta, Selective facilitation of syntactic processing by transcranial electrical stimulation over the left inferior frontal cortex, Seminar at Max Planck Institute for Human Cognitive and Brain Sciences, 2022.09, Previous neuroimaging studies have demonstrated that neural activation in the left inferior frontal gyrus (IFG) correlates with syntactic processing. However, as previous studies have only tested the correlation between left IFG activation and syntactic processing, the causal relationship has remained unclear. Using transcranial electrical stimulation (tES), a non-invasive brain stimulation technique that modulates brain activation, we examine whether higher activation in the left IFG improves sentence comprehension in a native language (Japanese, Experiment 1) and a non-native language (Spanish, Experiment 2). In Experiment 1, the participants performed a sentence comprehension task using two types of Japanese sentences (active sentences: e.g., Taro-ga Hanako-o tataita (Taro hit Hanako); passive sentences: e.g., Hanako-ga Taro-ni tatakareta, (Hanako was hit by Taro)). They showed that reaction times for syntactically more complex passive sentences shortened, but not for simpler active sentences. In Experiment 2, the participants who were naïve to Spanish learned verb conjugations in Spanish during tES and performed verb conjugation and short-term memory tasks. We found higher task accuracy and shorter reaction times on the verb conjugation tasks but not on the short-term memory task. These results elucidate a causal relationship between the left IFG and language processing both in native and non-native languages..
6. Shinri Ohta, Introduction to neurolinguistics II: Aphasia and other language impairments, Seminar at Dongguk University, 2022.08.
7. Shinri Ohta, Electrical stimulation of the brain can help you learn foreign languages!? –An examination of foreign language learning using transcranial electrical stimulation–, Japanese Association of Scholars in Science Meeting, 2022.08.
8. Shinri Ohta, Investigating the neural basis of Merge, Seminar at University of Southern California, 2022.08.
9. Shinri Ohta, Functional and anatomical reorganization of language-related networks caused by a left frontal glioma, Seminar at the University of Georgia, 2022.07.
10. Shinri Ohta, Introduction to neurolinguistics I: Experimental methods in neurolinguistics, Seminar at Dongguk University, 2022.07, Neurolinguistics is an interdisciplinary field of neuroscience and linguistics investigating the neural basis of language. Neurolinguistics emphasizes data from neuroimaging experiments and those from patients with language impairments. In this talk, I will explain experimental methods, including electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and noninvasive brain stimulation techniques (NIBS), primarily focusing on the advantages and disadvantages of each method. Finally, I will introduce our recent neuroimaging and NIBS studies, which target the neural basis of morphological processing and second language learning..
11. Daniel C. Gallagher, Kyosuke Matsumoto, Shinri Ohta, Effects of left inferior prefrontal cortex anodal stimulation on second language acquisition, NEURO2022, 2022.07.
12. 酒井邦嘉, 梅島奎立, 中村一創, 太田真理, 公開特別シンポジウム:言語脳科学が切り開く言語学の未来, 日本言語学会第164回大会, 2022.06, 近年の脳科学の急速な発展により、言語を支える脳のメカニズムの実態が明らかになりつつある。言語学においても、多様な言語を対象に理論・記述の両面で研究が進展したことで、徐々に言語の実像が解明されつつある。しかしながら、脳科学実験の言語学的な意味づけや、実験に基づく言語理論の構築・改訂など、言語学と脳科学が生産的な関係を築くための課題は多い。本シンポジウムでは、言語脳科学の研究成果を概観した上で、脳科学が言語学にどのように貢献した(しうる)のか、今後の課題は何かについて議論を行う。さらに、言語学者と脳科学者の双方が、互いの分野に求めることについて議論することで、言語学と脳科学が協力して言語の研究を進める可能性についても検討する。.
13. Shinri Ohta, Modulating neural activation in the language areas: A transcranial electrical stimulation study, SNU Linguistic Colloquium, 2022.04, Previous neuroimaging studies have demonstrated that neural activation in the left inferior frontal gyrus (IFG), the brain region known as Broca’s area, correlates with the hierarchical complexity of a sentence. Based on these results, the left IFG has been proposed as a grammar center. However, as previous studies have only tested the correlation between left IFG activation and structural complexity, the causal relationship has remained unclear. Using transcranial electrical stimulation, a non-invasive brain stimulation technique that modulates neural activation, we examine whether higher activation in the left IFG improves sentence comprehension in a native language (Japanese, Experiment 1) and a non-native language (Spanish, Experiment 2). In Experiment 1, the participants showed shorter reaction times for syntactically more complex passive sentences. Moreover, in Experiment 2, we found higher task accuracy and shorter reaction times on language acquisition tasks, but not on a short-term memory task. These results elucidate a causal relationship between the left IFG and language processing both in native and non-native languages..
14. Shinri Ohta, Wakana Oishi, Selective modulation of sentence comprehension by tACS over the left inferior frontal cortex, Architectures and Mechanisms for Language Processing, 2021, 2021.09, Previous neuroimaging studies have proposed that the left inferior frontal gyrus (IFG) was crucial for constructing hierarchical syntactic structures (Ohta et al. 2013, Zaccarella et al. 2017). Moreover, another neuroimaging study has demonstrated the cortical activity of differ-ent frequency bands, which corresponded to syllabic, phrasal, and sentential rates, suggest-ing grammar-based internal construction of the hierarchical linguistic structure (Ding et al. 2016). Using transcranial alternating stimulation (tACS), which can modulate the specific fre-quency band of the cortical activity non-invasively (Antal & Paulus 2013), we examined whether the modulation of the cortical activity that corresponded to sentence structure con-struction changed sentence comprehension. We hypothesize that tACS at the sentential rate disrupts the internal construction of the hierarchical sentence structure, which may increase the difficulty of sentence comprehension.
We recruited 15 right-handed native speakers of Japanese (8 males, mean ± SD = 21.9 ± 0.8 years), who had no history of neurological or psychiatric diseases. The same par-ticipants were tested for both the tACS session and sham session (Fig. 1A). We used 96 Japanese sentences and 96 word-strings (total 192 stimuli). Each sentence stimulus consist-ed of three noun phrases and one verb, immediately followed by a question consisted of a subject and a verb (Fig. 1B). Each word list stimulus consisted of four noun or verb phrases, immediately followed by a pair of words (Fig. 1C). In the present experiment, we used a sen-tence comprehension task and a short-term memory task. In the sentence comprehension task, the participants judged whether the meaning of the sentence matched with the question by pressing one of two buttons, while in the short-term memory task, they judged which of the words in a word pair was included in the word string. We used a double-blinded sham-controlled design. Stimulation was delivered using DC-Stimulator Plus (NeuroConn, Germany). The two electrodes were placed over F7 and Fp2 according to the International 10-20 EEG system, which were right above the left IFG and the right forehead, respectively. For tACS, stimulation was given for 20 minutes (±2 mA, 0.5 Hz, 5 cm * 7 cm saline-soaked sponge elec-trodes, >10 kΩ). We used 0.5-Hz stimulation that corresponded to the sentential rate of the sentence comprehension task. Sham stimulation, which controls for the placebo effect, ramped up to ±2 mA over 10 s, remained at that level for 30 s, ramped back down over 10 s. In the sham session, the participants felt the initial ramp up event, which is the most noticeable in tACS, without receiving an effective stimulation in the tACS. Before and after the tACS and sham sessions, the participants performed the sentence comprehension and short-term memory tasks.
The participants showed high accuracies (>90%) and short reaction times to compre-hension questions (RTs,
15. Shinri Ohta, Selective facilitation of sentence comprehension by tACS over the left inferior frontal region, Neuroscience2021, 2021.07.
16. 太田真理, 左下前頭皮質への経頭蓋電気刺激による文理解の促進効果の検討, 日本言語学会第162回大会, 2021.06.
17. Shinri OHTA, Selective modulation of syntactic processing by anodal tDCS over the left inferior frontal region, The 34th CUNY Conference on Human Sentence Processing, 2021.03, Previous neuroimaging studies have demonstrated that the left inferior frontal gyrus (IFG) is critical for syntactic processing. To test the causal relationship between the left IFG activation and syntactic processing, we examined whether anodal (i.e. excitatory) transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique applicable in humans, over the left IFG facilitates syntactic processing. We hypothesize that behavioral performance of sentences with additional syntactic loads (e.g. passive sentences) is improved by the anodal tDCS.
We recruited 20 right-handed native speakers of Japanese (10 males, mean ± SD = 22.5±0.8 years), who had no history of neurological or psychiatric diseases. The same participants were tested for both anodal stimulation session and sham session (Fig. 1A). We used 30 Japanese sentences for each of active intransitive (e.g., Taro-to Hanako-ga aruita, Taro and Hanako walked), active transitive (Taro-ga Hanako-o tataita, Taro hit Hanako), passive intransitive (Hanako-ga Taro-ni arukareta, Hanako was adversely affected by Taro’s walking), and passive transitive sentences (Hanako-ga Taro-ni tatakareta, Hanako was hit by Taro) (total 120 stimuli). To examine the effect of active/passive voice as well as that of transitivity, we used these four sentence types. Note that the passive intransitive sentences, the so-called indirect passive, are grammatical in Japanese. Each sentence consisted of two noun phrases and one verb, immediately followed by a question consisted of a subject and a verb (e.g., Taro-ga aruita?, Did Taro walk?). In the present experiment, we used a sentence comprehension task, in which the participants were instructed to judge whether the meaning of the sentence matched with the question by pressing one of two buttons. We used a single-blinded sham-controlled design. Stimulation was delivered using DC-Stimulator Plus (NeuroConn GmbH, Germany). The anode and cathode electrodes were placed over F5 and F6 according to the International 10-20 EEG system, which were right above the left and right IFG, respectively. For anodal tDCS, stimulation was given for 20 minutes (1 mA, 5 cm * 7 cm saline-soaked sponge electrodes). Sham stimulation, which controls for the placebo effect, ramped up to 1 mA over 10 s, remained at that level for 30 s, ramped back down over 10 s. In the sham session, the participants felt the initial ramp up event, which is the most noticeable in tDCS, without receiving an effective stimulation in the anodal tDCS. Before and after the anodal and sham stimulations, the participants performed the sentence comprehension task (Pre and Post task).
The participants showed high accuracies (> 90%) and short reaction times to comprehension questions (RTs, .18). The rANOVA for the RTs also showed significant main effects of Condition (F(3,57)=42, p<.0001 and pre p=".0002)," as well the interaction of these factors results suggest that active intransitive condition was easiest while passive conditions were more demanding. significant main effect also shows learning eff to consider random variabilities participants stimuli we further analyzed rts by using a linear mixed-effect model lmertest packages on r found with stimulation significantly better than simpler without such suggesting anodal tdcs. moreover over left ifg decreased sentences fig in present tdcs study demonstrated facilitated processing syntactically demanding causal relationship between activation syntactic processing.. id="gakkai_happyos10187075" class="qir_handle_link">
18. Shinri Ohta, Kazuki Maeno, Facilitation of syntactic processing by anodal tDCS over the left inferior frontal gyrus, 12th Annual Meeting of the Society for the Neurobiology of Language (SNL2020), 2020.10.
19. Shinri Ohta, Yohei Oseki, Alec Marantz, Dissociating the effects of morphemes and letters in visual word recognition: An MEG study of Japanese verbs, AMLaP 2019, 2019.09, Previous magnetoencephalography (MEG) studies reported that transition probability between morphemes (morphTP) was correlated with the amplitude of the activation in the left fusiform and inferior temporal gyri (L. FG/ITG) around 170 ms after the onset of visual stimuli (M170). However, it is difficult to examine whether the M170 is modulated by morphTP or transition probability between letters (letterTP). To dissociate the effects of morphTP and letterTP on the L. FG/ITG, we targeted the Japanese verbs, in which morphological boundaries do not always correspond to letter boundaries due to the Japanese kanji and kana writing system.
We recruited 22 right-handed native speakers of Japanese (nine males, 35.5±7.3 yrs.). We used 448 Japanese verbs, as well as the same number of nonwords (total 896 stimuli). The participants performed a visual lexical decision task. We used a 157-channel MEG system (KIT, Japan) for recording, and MEG-Python and Eelbrain packages for the MEG analyses. As our primary target was the M170, the region of interest was anatomically defined as the L. FG/ITG and the analysis time window was restricted to 50-250 ms after word onset.
We examined whether the M170 is modulated by morphTP or letterTP. We found a significant negative correlation of the morphTP (corrected p
20. Shinri Ohta, Yohei Oseki, Alec Marantz, Disentangling morphological processing and letter recognition: An MEG study of Japanese verbs, SNL 2019, 2019.08.
21. Ohta S, Functional neuroimaging as a tool for testing/generating linguistic hypotheses, The Japanese Society for Language Sciences 21st Annual International Conference (JSLS2019), 2019.07, [URL].
22. 太田真理, 言語獲得・言語学習を支える脳, 英語音声指導協会 2018夏のワークショップ, 2018.08.
23. 太田 真理, Computational principles of syntax in the language areas : Verification of the syntactic operations using fMRI, 日本音韻論学会 2018 年度春期研究発表会, 2018.06.
24. 太田真理, 機能的磁気共鳴画像法 (fMRI) と統語処理の神経基盤(ワークショップ「理論言語学と認知神経科学:言語理論はどうすれば脳科学実験によって確かめられるのか?」), 日本言語学会第152回大会, 2016.06.
25. 太田 真理, 福井 直樹, 辻子 美保子, 成田 広樹, 酒井 邦嘉, Merge-generability as a crucial concept in syntax: An experimental study, First International Symposium on the Physics of Language, 2016.03.
学会活動
所属学会名
Society for the Neurobiology of Language
日本神経科学学会
日本言語学会
日本音韻論学会
学協会役員等への就任
2021.04~2023.03, 日本言語学会, 倫理委員.
2021.04~2024.03, 日本言語学会, 常任委員.
学会大会・会議・シンポジウム等における役割
2024.01.17~2024.01.17, 九州大学・ソウル大学校合同言語学研究会「理論と実験を統合した言語学研究の実現に向けた日韓研究者ネットワークの構築」, 研究会企画者.
2022.08.19~2022.08.19, Cognitive Science and Neurolinguistics Invited Talk and Student Seminar, セミナー招待講演者・企画運営者.
2022.03.15~2023.03.15, データサイエンスと人文学の協働による研究・教育の可能性 —九州大学数理・データサイエンス教育研究センターの取り組み—, シンポジウム企画者・運営者.
2022.06.18~2022.06.19, 日本言語学会第164会大会, 公開特別シンポジウム企画者・講演者.
2019.07.06~2019.07.07, 言語科学会第二十一回年次国際大会, シンポジウム講演者.
2018.07.26~2018.07.29, 第41回日本神経科学大会 一般口演「言語とコミュニケーション(2)」, 座長.
2015.07.29~2015.07.29, 第38回日本神経科学大会 一般口演「言語機能」, 座長(Chairmanship).
学会誌・雑誌・著書の編集への参加状況
2024.03, Frontiers in Behavioral Neuroscience, 国際, 査読委員.
2019.11~2023.05, Frontiers in Communication, 国際, 査読委員.
2019.11, Frontiers in Psychology, 国際, 査読委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2024年度   14    15 
2023年度   15    20 
2022年度    
2021年度      
2020年度      
2019年度      
2017年度      
2015年度    
2013年度      
2012年度      
2011年度      
2010年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
Seoul National University, Korea, 2024.01~2024.01.
Max Planck Institute for Human Cognitive and Brain Sciences, Germany, 2022.09~2022.09.
New York University, UnitedStatesofAmerica, 2019.07~2019.08.
New York University, UnitedStatesofAmerica, 2018.08~2018.09.
New York University, UnitedStatesofAmerica, 2017.02~2018.03.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2024年度~2026年度, 基盤研究(B), 代表, 高密度経頭蓋時間干渉刺激法を用いた言語の獲得と喪失の神経機構の解明.
2023年度~2027年度, 基盤研究(S), 分担, 人間の記号処理能力の基盤を探る-言語の形式と意味をつなぐ認知神経システムの解明.
2023年度~2025年度, 基盤研究(A), 分担, 脳磁図と頭蓋内脳波の時間分解MVP解析による言語の形式と意味を繋ぐシステムの解明.
2019年度~2024年度, 基盤研究(S), 分担, OS言語からみた「言語の語順」と「思考の順序」に関するフィールド認知脳科学的研究.
2021年度~2024年度, 挑戦的研究(萌芽), 代表, 脳活動の変化は言語学習を促進するか?-脳波フィードバックによる検討-.
2019年度~2023年度, 基盤研究(B), 代表, 理論・モデル・実験を統合した言語の神経基盤の解明.
2017年度~2022年度, 新学術領域研究, 分担, 共創的コミュニケーションのための言語進化学:言語の起源・進化研究の理論的枠組み.
2015年度~2016年度, 若手研究(B), 代表, 日本語とカクチケル語の比較研究による言語の普遍性と多様性の神経基盤の解明.
2012年度~2013年度, 特別研究員奨励費, 代表, 脳磁図とトラクトグラフィによる文構造を処理する領野間の機能的・解剖学的結合の解明.
日本学術振興会への採択状況(科学研究費補助金以外)
2016年度~2017年度, 海外特別研究員, 代表, 動詞の形態統語構造を処理する神経基盤の解明:脳磁図を利用した日英語対照研究.
2012年度~2013年度, 特別研究員, 代表, 脳磁図とトラクトグラフィによる文構造を処理する領野間の機能的・解剖学的結合の解明.
競争的資金(受託研究を含む)の採択状況
2022年度~2023年度, 公益財団法人住友財団・2022年度基礎科学研究助成, 代表, 経頭蓋電気刺激と脳波計測を統合した外国語学習の神経基盤の解明.
2022年度~2024年度, 公益財団法人吉田学術教育振興会・令和4年度学術奨励金, 代表, 経頭蓋電気刺激法と脳波計測を統合した言語リハビリテーション技術の確立.
2023年度~2024年度, 公益財団法人テルモ生命科学振興財団・2023年度III研究助成金, 代表, 経頭蓋時間干渉刺激による難読症のリハビリテーション技術の開発.
2024年度~2025年度, 公益財団法人中谷医工計測技術振興財団・2023年度技術開発研究助成(奨励研究), 代表, 経頭蓋時間干渉刺激と脳機能イメージングによる脳の非侵襲的可塑性誘導技術の確立.
寄附金の受入状況
2024年度, 公益財団法人中谷医工計測技術振興財団, 2023年度技術開発研究助成(奨励研究)「経頭蓋時間干渉刺激と脳機能イメージングによる脳の非侵襲的可塑性誘導技術の確立」.
2024年度, 公益財団法人テルモ生命科学振興財団, 2023年度III研究助成金「経頭蓋時間干渉刺激による難読症のリハビリテーション技術の開発」.
2022年度, 公益財団法人住友財団, 経頭蓋電気刺激と脳波計測を統合した外国語学習の神経基盤の解明.
2022年度, 公益財団法人吉田学術教育振興会, 経頭蓋電気刺激法と脳波計測を統合した言語リハビリテーション技術の確立.
学内資金・基金等への採択状況
2023年度~2023年度, 総合知のプラットフォームによる研究・教育支援, 代表, 脳磁図を用いた非侵襲的な脳機能マッピング法の開発.
2023年度~2023年度, 戦略的パートナーシップ候補大学との研究者ネットワーク形成推進プログラム, 代表, 理論と実験を統合した言語学研究の実現に向けた日韓研究者ネットワークの構築.
2020年度~2022年度, 九州大学ダイバーシティ・スーパーグローバル教員育成研修 (SENTAN-Q) , 代表, 第2期生.
2020年度~2020年度, QRプログラム わかばチャレンジ, 分担, 言葉を予期している時の神経活動の解明.
2019年度~2023年度, QRプログラム つばさプロジェクト, 代表, 言語学・情報科学・数理科学を融合した脳内言語処理過程の実証.
2018年度~2018年度, 若手研究者研究環境整備経費, 分担, 人文科学研究院におけるデータサイエンスのための共同実験室の整備.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。