九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動
鳥取 直友(とっとり なおとも) データ更新日:2021.07.08



主な研究テーマ
マイクロ流体デバイスを用いた細胞への物質導入
キーワード:マイクロ流路,物質導入
2020.06.
結晶生成のためのマイクロ流体システムの開発
キーワード:タンパク質結晶,マイクロ流路,マイクロバブル
2020.06.
マイクロ流路を用いた機能性粒子の生成
キーワード:マイクロ流路,反応・処理,機能性粒子
2018.09.
マイクロ流体デバイスを用いた粒子分離
キーワード:マイクロ流路,微粒子分離,マイクロピラーアレイ
2014.04.
研究業績
主要著書
主要原著論文
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. Akiho Hirao, Naotomo Tottori, Maasa Yokomori, Miho Tagawa, Shigeo S. Sugano, Shinya Sakuma, and Yoko Yamanishi, Protein crystallization in microdroplets with the aid of electrically induced microbubbles, The 34th IEEE Int. Conf. on Micro Electro Mechanical Systems, IEEE MEMS 2021, 2021.01.
2. Naotomo Tottori, and Takasi Nisisako, Continuous generation of cell-laden microgels through deterministic lateral displacement arrays, The 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2020, 2020.10.
3. Naotomo Tottori, Takasi Nisisako, Degas-driven microfluidic deterministic lateral displacement, 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2018, 2018.01, We report degas-driven deterministic lateral displacement (DLD) for size-based particles enrichment and separation by using polydimethylsiloxane (PDMS) gas solubility. Unlike conventional DLDs which normally require external pumping equipment, we have employed degas-driven flow of a PDMS device to infuse a sample solution into a DLD array. We have demonstrated DLD-based enrichment and separation of differently sized microbeads. Furthermore, separation of white blood cells (WBCs) and red blood cells (RBCs) in whole blood was also demonstrated..
4. Naotomo Tottori, Liu Yingzhe, Takasi Nisisako, Functional particles design using deterministic lateral displacement, 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2018, 2018.01, We propose novel deterministic lateral displacement (DLD) devices that enable separation and reaction simultaneously for producing functional particles. Firstly, we produced spherical Ca-alginate gel particles without satellite droplets by producing and transporting Na-alginate droplets across the CaCl2 emulsion stream through DLD micropillars. We also demonstrate polyelectrolyte coating onto polystyrene microspheres using multiple laminar streams flowing through DLD micropillars..
5. Naotomo Tottori, Takasi Nisisako, Particles separation via sheath-free deterministic lateral displacement with inertially focused single input, 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017, 2020.01, We report sheath-free deterministic lateral displacement (DLD) for size-based particles separation by using inertial focusing in a single input stream. Unlike conventional DLDs which require sheath streams to focus a particles-containing solution before DLD arrays, we have employed inertial focusing to align particles along the center or sidewalls of the input channel. We have demonstrated inertial focusing and DLD-based separation of differently sized microbeads..
6. Naotomo Tottori, Takasi Nisisako, Sheathless deterministic lateral displacement for continuous particle separation in viscoelastic fluid, 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017, 2020.01, We present sheathless deterministic lateral displacement (DLD) for particles separation by using elasto-inertial focusing in a single input stream. Instead of conventional DLDs which require sheath buffer streams to focus a particles-containing sample solution before DLD arrays, we have employed elasto-inertial focusing to align particles along an input channel center line. We have demonstrated successful elasto-inertial focusing and microbeads separation based on their sizes in the DLD array..
7. N. Tottori, T. Nisisako, Y. Yanagida, T. Hatsuzawa, In situ separation of main and satellite droplets using a deterministic lateral displacement microfluidic device, 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016, 2016.01, We report the continuous and passive separation of main and satellite droplets using a deterministic lateral displacement (DLD) array coupled with a symmetric microfluidic droplet generator. In addition to the collection of the main water-in-oil droplets at 100% purity, fractionation of satellite populations of different sizes could be achieved through the multi-step hydrophobic DLD regions. Moreover, separation of main and satellite biphasic oil-in-water droplets was successfully demonstrated using a hydrophilic DLD device. To the best of our knowledge, this is the first report on the microfluidic separation of main and satellite droplets produced in a purely symmetric system..
8. N. Tottori, Y. Sakurai, T. Nisisako, Y. Yanagida, T. Hatsuzawa, Thermally tunable deterministic lateral displacement through hydrogel micro pillar arrays, 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016, 2016.01, We present a novel deterministic lateral displacement (DLD) microfluidic device with thermally tunable separation capability. To flexibly change the critical diameter (Dc) of the separation array, we fabricated DLD micropillars made of poly-N-isopropylacrylamide, a thermo-responsive hydrogel, in a polydimethyl siloxane microfluidic channel. The prepared DLD pillars shrunk at a high temperature (>30°C) and swelled at a low temperature (<30°C) in an aqueous solution because of their characteristic hydrophilic-hydrophobic phase transitions. By heating and cooling the DLD device across the transition temperature, the Dccould be continuously changed and the separation mode of the model particles could be switched..
9. Naotomo Tottori, Jongho Park, Yasuko Yanagida, Takeshi Hatsuzawa, Separation of viable cells using deterministic lateral displacement microfluidic device, 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2015, 2015.01, We report the first use of deterministic lateral displacement (DLD) microfluidic device for label-free separation of viable cells from nonviable cells. Cells in apoptosis status are physically smaller than viable cells. We focused on this phenomenon and have demonstrated the separation of viable cells from nonviable cells using DLD method, which can separate particles based on their sizes continuously without any labeling and external energy sources. We succeeded in the removal of 66.9% nonviable cells and also enrichment of viable cells..
学会活動
所属学会名
日本機械学会
化学とマイクロ・ナノシステム学会
学会大会・会議・シンポジウム等における役割
2021.05.17~2021.05.18, 化学とマイクロ・ナノシステム学会 第43回研究会, 実行委員.
2020.10.26~2020.10.28, 化学とマイクロ・ナノシステム学会 第42回研究会, 実行委員.
学会誌・雑誌・著書の編集への参加状況
2018.10~2020.06, Micromachines, Special Issue "Particles Separation in Microfluidic Devices", 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2020年度      
2019年度      
受賞
アドバンスト・ベストプレゼンテーション賞, 2019年度精密工学会秋季大会, 2019.09.
マイクロ化学プロセス分科会賞, 化学工学会第50回秋季大会, 2018.09.
ベストプレゼンテーション賞, 第46回可視化情報シンポジウム, 2018.09.
ベストプレゼンテーション賞, 2017年度精密工学会秋季大会, 2017.09.
優秀学生賞, 化学工学会第82年会, 2017.03.
優秀発表賞, 化学とマイクロ・ナノシステム学会第33回研究会, 2016.04.
ベストポスタープレゼンテーション賞, 2015年度精密工学会秋季大会, 2015.09.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2017年度~2018年度, 特別研究員奨励費, 代表, マイクロピラー構造を用いた簡便かつ高機能な微粒子分離デバイス.
2019年度~2020年度, 研究活動スタート支援, 代表, マイクロピラーアレイを用いた単一細胞包埋ゲル微粒子の連続生成.
日本学術振興会への採択状況(科学研究費補助金以外)
2017年度~2018年度, 特別研究員, 代表, マイクロピラー構造を用いた簡便かつ高機能な微粒子分離デバイス.
競争的資金(受託研究を含む)の採択状況
2021年度~2021年度, CREST若手チャレンジ, 代表, 細胞内包液滴と支柱配列流路を用いたオンチップ電気的細胞融合デバイスの開発.
寄附金の受入状況
2021年度, 中谷医工計測技術振興財団 奨励研究
支柱配列マイクロ流路を用いた希少細胞の連続分離・処理プロセスの確立.
学内資金・基金等への採択状況
2021年度~2021年度, 令和3年度 QRプログラム わかばチャレンジ, 代表, オンチップ反応・処理プロセスによる機能性細胞包埋ゲル微粒子の精密調製.
2020年度~2020年度, 令和2年度 QRプログラム わかばチャレンジ, 代表, 支柱配列流路内の多相流横断を介した細胞包埋ゲル微粒子の連続生成プロセス.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」