Kyushu University Academic Staff Educational and Research Activities Database
List of Papers
Takayuki Nojima Last modified date:2022.05.23

Associate Professor / Cancer genome regulation / Research Center for Systems Immunology / Medical Institute of Bioregulation


Papers
1. Joana Wilton, Michael Tellier, Takayuki Nojima, Angela M Costa, Maria Jose Oliveira, Alexandra Moreira, Simultaneous studies of gene expression and alternative polyadenylation in primary human immune cells, Methods in Enzymology, 10.1016/bs.mie.2021.04.004 , 655, 349-399, 2021.06, [URL].
2. Rui Sousa-Luís, Gwendal Dujardin, Inna Zukher, Hiroshi Kimura, Carika Weldon, Maria Carmo-Fonseca, Nick J.Proudfoot, and Takayuki Nojima, POINT technology illuminates the processing of polymerase-associated intact nascent transcripts, Molecular Cell, https://doi.org/10.1101/2020.11.09.374108, 2021.05, [URL], Mammalian chromatin is the site of both RNA polymerase II (Pol II) transcription and coupled RNA processing. However, molecular details of such co-transcriptional mechanisms remain obscure, partly because of technical limitations in purifying authentic nascent transcripts. We present a new approach to characterize nascent RNA, called polymerase intact nascent transcript (POINT) technology. This three-pronged methodology maps nascent RNA 5' ends (POINT-5), establishes the kinetics of co-transcriptional splicing patterns (POINT-nano), and profiles whole transcription units (POINT-seq). In particular, we show by depletion of the nuclear exonuclease Xrn2 that this activity acts selectively on cleaved 5' P-RNA at polyadenylation sites. Furthermore, POINT-nano reveals that co-transcriptional splicing either occurs immediately after splice site transcription or is delayed until Pol II transcribes downstream sequences. Finally, we connect RNA cleavage and splicing with either premature or full-length transcript termination. We anticipate that POINT technology will afford full dissection of the complexity of co-transcriptional RNA processing..