Kyushu University Academic Staff Educational and Research Activities Database
List of Presentations
Mieko Arisawa Last modified date:2021.06.16

Professor / Department of Bioscience and Biotechnology / Faculty of Agriculture


Presentations
1. 有澤 美枝子, Transition-Metal-Catalyzed Synthesis of Organoheteroatom Compounds, Tohoku University’s Chemistry Summer School 2015, 2015.08.
2. 有澤 美枝子, Rhodium-catalyzed synthesis of organosulfur compounds, 2015 CAMPUS Asia Symposium Chemical Frontier and Advanced Materials, 2015.11.
3. 有澤 美枝子, Rhodium-catalyzed synthesis of organosulfur compounds, Pharmaceutical Science Symposium 2015 in Sendai, 2015.11.
4. 有澤 美枝子, Rhodium-catalyzed synthesis of organosulfur compounds, The 2015 International Chemical Congress of Pacific Basin Societies, 2015.12.
5. 有澤 美枝子, Rhodium-catalyzed synthesis of di(heteroaryl) HetAr–X–HetAr’ compounds using heteroaryl exchange reactions, International Symposium on Pure & Applied Chemistry (ISPAC) 2017, 2017.06.
6. 有澤 美枝子, Rhodium-catalyzed Synthesis of Novel Organosulfur Compounds, 28th International Symposium on the Organic Chemistry of Sulfur, 2018.08.
7. Ortho-divinylation reaction of phenols with acetylene..
8. 2,6 - di- vinylation reaction of phenol using acetylene..
9. Ortho-vinylation reaction of anilines with acetylene..
10. M Yamaguchi, M Arisawa, Y Kido, M Hirama, 2,6-divinylation of phenols with ethyne, CHEMICAL COMMUNICATIONS, 1997.09, Phenols are 2,6-divinylated by treatment with ethyne at 100 degrees C in chlorobenzene in the presence of SnCl4-Bu3N, the divinylation occurring predominantly to exclusively with phenol, alkylphenols and alkoxyphenols; an appropriate amount of the tin reagent and the correct reaction temperature are essential for the divinylation..
11. Cross-coupling reaction of silylacetylene and silylenolether using gallium chloride..
12. Formation of (.BETA.-stannylvinyl)phenol in the phenol vinylation reaction..
13. Dimerization reaction of allenes promoted by palladium-phenol catalyst..
14. .ALPHA.-Vinylation Reaction of Silyl enol ether..
15. New reactions to combine benzene ring to vynyl group and the periphery..
16. 遷移金属触媒を用いたアセチレンへの三級ホスフィンの付加反応.
17. 触媒量のSnCl4を用いたフェノールビニル化反応.
18. チオエステルシリルエノラートのビニル化反応.
19. K Kido, M Arisawa, M Yamaguchi, GaCl3-promoted addition reactions of carbon nucleophiles to alkyne, JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN, 2000.11, GaCl3 promotes addition reactions of carbon nucleophiles to a C-C triple bond. Interaction of alkyne with GaCl3 generates a highly reactive electrophile, which aromatic hydrocarbon attacks to give an alkenylated arene. Silylethyne reacts predominantly at the p-position of toluene, while disilylated 1,3-butadiyne exhibits o-selectivity. The behavior of a silylated 1,2-propadiene is intermediate between that of the silylethyne and the disilylated 1,3-butadiyne. In the presence of GaCl3, electrophilic trimerization of silylethyne takes place to give a conjugated hexatriene. In this reaction, silylethyne attacks the GaCl3-activated C-C triple bond. Carbometalation is another interesting addition reaction of an organogallium compound to alkyne. Alkynyldichlorogallium dimerizes in hydrocarbon solvents to give 1,1-dimetallo-1-buten-3-yne. In the presence of GaCl3, silyl enol ether is ethenylated at the alpha -carbon atom with trimethylsilylethyne. Treatment of lithium phenoxide with silylethyne in the presence of GaCl3 gives o-(beta -silylethenyl) phenol. These reactions involve carbogallation of alkynylgallium, gallium enolate, or gallium phenoxide..
20. Novel Reactions of Heteroatom Compounds Using Transition Metal-Sulfonic Acid Catalysts..
21. 塩化ガリウムを用いる1,3‐ジカルボニル化合物のビニル化反応.
22. ガリウムエノラートの一段階エチニル化反応.
23. One-step synthesis of .ALPHA.-ethynyl ketones possessing acidic .ALPHA.-protons..
24. Aromatic Bromination-Rearrangement of Polymethylbenzenes Using GaCl3 Catalyst..
25. One-pot .ALPHA.-Enynylation Reaction of Silyl Enol Ether with Silylethyne Promoted by GaCl3..
26. GaCl3-Promoted Ethenylation of Ester Silyl Enolates with Silylethyne..
27. ロジウム触媒を用いた三級ホスフィンの共役ジエンへの付加反応/(Z)‐1,3‐ジエンの精製法.
28. スルホン酸‐ロジウム触媒を用いたアレンへのジスルフィドの付加反応.
29. Addition Reaction of Dialkyl Diselenides to Allenes Catalyzed by a Rhodium Complex and Trifluoromethanesulfonic Acid..
30. 遷移金属触媒を用いるジスルフィド交換反応.
31. Transition metal catalyzed addition reaction of tertiary phosphine to alkenes.
32. GaCl3 Using.alfa.-Ethenylation Reaction of Ketone.
33. Ethynylation reaction of alkylmalonates.
34. GaCl3-Catalyzes .ALPHA.-Ethynylation Reaction of Silyl Enol Ether.
35. 塩化ガリウムを用いるシリルエノールエーテルの一段階エンポリイン化反応.
36. 塩化ガリウムを用いたエノラートの一段階エチニル化反応.
37. Rhodium catalyzed regio- and stereoselective thioselenation of alkynes.
38. Addition Reaction of Dialkyl Disulfide to Silylacetylene Catalyzed by Rhodium Complex giving Trialkylthioethylene.
39. Rhodium Catalyzed Disulfide Exchange Reaction.
40. Addition Reaction of Dialkyl Disulfides to Allenes Catalyzed by a Rhodium Complex and Trifluoromethanesulfonic Acid.
41. 遷移金属触媒を用いた3級ホスフィンの1‐アルケンへの付加反応.
42. Rhodium Catalyzed Disulfide Exchange Reaction in Water.
43. Rhodium Catalyzed Thioester Exchange Reaction with Disulfide.
44. Rhodium catalyzed aerobic oxidation of thiol to disulfide.
45. Rhodium Catalyzed Disulfide-Trisulfide Exchange Reaction.
46. Syntheses and Structures of Stable Carbenes and Organometallic Complex Catalysts..
47. Synthesis of Alkynylsulfides via Rhodium Catalyzed C-H activation of 1-Alkynes.
48. RhCl3-Catalyzed Disulfide Exchange Reaction in Water.
49. RhCl3触媒を用いる水中での均一系および不均一系ジスルフィド交換反応.
50. ビニルスルフィドとジスルフィドとの触媒的アルキルチオ交換反応.
51. アリルスルフィドとジスルフィドとの触媒的アルキルチオ交換反応.
52. Transition-metal-catalyzed synthesis of organophosphorous and organosulfur compounds
Organoheteroatom compounds of phosphorous and sulfur are important in relation to the development of biologically active substances and materials. Conventional synthesis in general employed substitution reactions of organohalogen compounds with heteroatom reagents. It was considered that i) the addition reaction to unsaturated compounds; ii) the substitution reaction of C-H bond; iii) single bond metathesis would be more favorable, since the starting materials are readily available, and the reactions are atom-economical. Described here is the use of transition metal catalysis for such syntheses of organosulfur and organophosphorous compounds..
53. ロジウム触媒を用いる芳香族フッ化物のスルフィドへの変換反応.
54. ロジウム触媒を用いるα‐チオケトンのα,α‐ジチオ化置換反応.
55. ロジウム触媒を用いるニトロベンゼンの還元的ホスフィニルオキシ化反応.
56. ロジウム触媒を用いるアルキルチオアルキンから1,3‐ジインの生成反応.
57. ロジウム触媒を用いるアルキルチオアルキンのC‐S結合切断再配列反応.
58. 遷移金属触媒を用いる新しい炭素‐リン結合生成反応の開発.
59. 塩化ロジウムを用いるインスリンのジスルフィド交換反応.
60. ロジウム触媒を用いるα‐チオケトンのα‐CH/α‐CS結合切断再配列反応.
61. ロジウム触媒を用いるα‐チオケトンのα,α‐ジチオ化置換反応.
62. ロジウム触媒を用いるポリフルオロベンゼンの位置選択的アリールチオ化反応.
63. ロジウム触媒を用いる酸フッ化物のチオエステルへの変換反応.
64. ロジウム触媒を用いるポリフルオロベンゼンの位置選択的アリールチオ化反応.
65. アルキルチオアルキンと共役ジインのロジウム触媒カルボチオ化反応.
66. Rhodium-Catalyzed addition reaction of Biphosphine disulfide to aldehydes.
67. Rhodium-catalyzed dimethylthiophosphinylation reaction of hexafluorobenzene.
68. Rhodium-Catalyzed Methylthiolation Reaction of Active Methylene Compounds.
69. Rhodium-catalyzed C-P bond forming reaction via single bond metathesis of thioalkyne C-S bond and diphosphine P-P bond.
70. Rhodium-Catalyzed Phosphinylation Reaction of Acid Fluoride using Diphosphine Disulfide.
71. Mieko Arisawa, Katsunori Suwa, Masahiko Yamaguchi, Rhodium-Catalyzed Methylthio Transfer Reaction between Ketone alpha-Positions: Reversible Single-Bond Metathesis of C-S and C-H Bonds (vol 11, pg 627, 2009), ORGANIC LETTERS, 2009.03.
72. Ligand-effect in iron-catalysed Belousov-Zhabotinsky reaction.
73. Rhodium-Catalyzed Carbothiolation Reaction of Terminal Alkynes and 1-Alkyl-thioalkynes.
74. 酸フッ化物を用いる無塩基条件下でのロジウム触媒エステル化反応.
75. ロジウム錯体を用いるホスフィノエステルのエノールエステル化反応.
76. ロジウム触媒芳香族フッ素置換反応におけるRhH(dppBz)2錯体の利用とフッ素原子捕捉剤の開発.
77. ロジウム触媒を用いるベンジルケトンC‐C結合とチオエステルC‐S結合の切断再配列反応.
78. ロジウム触媒を用いる芳香族メチルエーテル結合切断反応.
79. ロジウム触媒を用いるケトンのα‐メチルチオ化置換反応.
80. ロジウム触媒を用いる芳香族フッ化物のアミノ化反応
The reactivity of organofluorine compounds differs from organochlorine, organobromine,<BR>and organoiodine compounds, and development of the substitution reacton of organofluoro compounds<BR>can considerably broaden the potential of organic synthesis. Previously, we reported the rhodium-catalyzed arylthiolation reaction of fluorobenzenes with disulfides. The rhodium catalysis method was applied here to the amination reaction of fluorobenzenes with anilines. When anilines and<BR> <I>p-</I>nitrofluorobenzene were heat at reflux in chlorobenzene in the presence of RhH(PPh<SUB>3</SUB>)<SUB>4</SUB> and dppe, triarylamines were obtained. N<SUB>2</SUB> bubbling improved the yield, which may be due to the removal of hydrogen fluoride (HF) and promotion of product precipitation..
81. ロジウム触媒を用いる芳香族フッ化物のアミノ化反応.
82. チオエステルによる末端アルキンのロジウム触媒カルボチオ化反応.
83. チオアルキンC‐S結合/ジホスフィンP‐P結合の切断再配列反応におけるチオアルキンの置換基効果.
84. ジホスフィンジスルフィドを用いるアルコールの触媒的ホスフィニルエステル化反応.
85. ケトンとo‐ジフルオロベンゼンを用いるロジウム触媒ベンゾフラン環化反応.
86. ケトンとo‐ジフルオロベンゼンを用いるロジウム触媒ベンゾフラン環化反応.
87. 芳香族フッ化物を用いるケトンのロジウム触媒α‐アリール化反応.
88. 有機イオウ・リン化合物の触媒的平衡制御合成
C-S/C-P bond formation is an essential process for the synthesis of organosulfur and organophosphorus compounds. Recently, we found single-bond metathesis reactions to be useful for such synthesis, and a variety of reactions involving cleavage of heteroatom bonds were developed. Single bond metathesis reactions were often reversible, and therefore the development of the method to control equilibrium turned to be important. <BR> We developed an equilibrium control method using co-substrates. Rhodium-catalyzed method can be used for acyl transfer equilibrium between acid fluorides, acylphosphine sulfides, thioesters, and aryl esters. Appropriate co-substrates changed the relative thermodynamic stabilities of substrates and products, and efficiently provided desired products. This method using the combination of a transition metal catalyst and heteroatom acceptors can be generally used for the synthesis of organoheteroatom compounds..
89. ロジウム触媒を用いる置換ペンタフルオロベンゼンのp‐位チオ化反応.
90. ロジウム触媒を用いる複素環化合物のフェニルチオ化反応.
91. ロジウム触媒を用いるニトロアルカンの1‐アリールチオ化反応.
92. ロジウム触媒を用いる酸フッ化物とチオエステル間の平衡的相互変換.
93. ロジウム触媒を用いるケトンおよび複素環化合物の平衡的チオ化反応.
94. ロジウム触媒を用いるニトロアルカンの1‐アリールチオ化反応.
95. ロジウム触媒を用いる平衡的アシル基転位反応の制御.
96. ジヒドロピリミジン骨格2位および4(6)位の置換反応.
97. ジヒドロピリミジン骨格2位および4(6)位の置換反応.
98. ジヒドロピリミジン骨格2位および4(6)位の置換反応と骨格開裂反応.
99. N‐スルフェニルアミドと酸フッ化物のロジウム触媒メタセシス反応.
100. N‐スルフェニルアミドと酸フッ化物のロジウム触媒メタセシス反応.
101. 芳香族メチルエーテルのロジウム触媒切断変換反応.
102. 芳香族フッ化物を用いる無塩基条件下でのロジウム触媒エーテル化反応.
103. 置換ペンタフルオロベンゼンによる末端シリルアルキンのロジウム触媒フッ素化反応.
104. 有機ポリスルフィド/イオウ単体を用いるロジウム触媒芳香族フッ化物のチオ化反応.
105. 有機イオウ化合物とケトンのロジウム触媒C‐C結合形成反応.
106. ロジウム触媒を用いる複素環化合物の直接チオ化反応.
107. ベンジルフェニルケトンCO‐C結合切断を伴う複素環化合物のロジウム触媒ベンジル化反応.
108. ベンジルケトンCC結合とチオエステルCS結合のロジウム触媒的CC/CSメタセシス反応.
109. α‐チオケトンとベンジルフェニルケトンのロジウム触媒クロスカップリング反応.
110. 芳香族C‐S結合切断を伴うロジウム触媒ジアリールスルフィド合成.
111. ベンジルフェニルケトンCO‐C結合切断を伴う複素環化合物のロジウム触媒ベンジル化反応.
112. アリール交換を用いるロジウム触媒芳香族スルフィドの合成.
113. 芳香族/複素環エーテルから非対称芳香族/複素環スルフィドを合成するロジウム触媒反応.
114. 芳香族/複素環カルボン酸無水物のC‐O単結合切断を伴うノルボルネン誘導体への付加反応.
115. 芳香族/複素環カルボン酸無水物のC‐O単結合切断を伴うノルボルネン誘導体への付加反応.
116. ジホスフィンと芳香族スルフィドから芳香族ホスフィンを合成するロジウム触媒反応.
117. イオウ単体を用いるノルボルネン誘導体へのロジウム触媒イオウ原子付加反応.
118. 酸無水物とチオエステルのノルボルネン誘導体へのパラジウム触媒的付加反応.
119. 芳香族チオエステルC‐S結合切断を伴うノルボルネン誘導体への付加反応.
120. ペンタフェニルシクロペンタホスフィンと芳香族スルフィドのロジウム触媒的切断交換反応.
121. シクロアルキンへのロジウム触媒イオウ付加反応を用いる1,4‐ジチインの合成.
122. 芳香族・複素環エーテルのロジウム触媒的フッ素化反応.
123. 置換ペンタフルオロベンゼンをフッ素化剤に用いる芳香族・複素環エーテルのロジウム触媒的フッ素化反応.
124. 複素環チオ基交換を伴うロジウム触媒的非対称ビス複素環スルフィドの合成反応.
125. 複素環エーテルから非対称ビス複素環スルフィドを与えるロジウム触媒反応.
126. 有機フッ素化合物を用いて芳香環・複素環エーテルの二つのエーテル結合をフッ素化するロジウム触媒反応.
127. ロジウム触媒を用いるジホスフィンジスルフィドP‐P結合交換反応.
128. ロジウム触媒を用いた1,4‐ジチインの異性化反応とアルキン交換反応.
129. 1,4‐ジチインのロジウム触媒的異性化反応とアルキン交換反応.
130. 複素環スルフィドのホスフィニル化による複素環ジアルキルホスフィン誘導体のロジウム触媒合成.
131. 複素環エーテルとN‐ベンゾイル複素環化合物のC‐N結合生成によるビス複素環化合物の触媒的合成法の開発.
132. ロジウム触媒的複素環交換反応による多様な複素環化合物の合成.
133. ペンタフェニルシクロペンタホスフィンPhP基のジスルフィドへのロジウム触媒挿入反応.
134. ジスルフィドのロジウム触媒的チオリン酸エステル化反応.