九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
佐々木 一成(ササキ カズナリ) データ更新日:2020.06.30

教授 /  工学研究院 機械工学部門 水素利用工学


主な研究テーマ
高温型燃料電池(SOFC)材料に関する研究
キーワード:燃料電池、固体酸化物形、電極材料、耐久性、被毒
1989.09.
固体高分子形燃料電池(PEFC)用の電極触媒材料の開発
キーワード:燃料電池、固体高分子形、電極触媒、電極担体、炭素ナノ材料, 導電性酸化物
1999.10.
水素エネルギー工学体系の構築
キーワード:水素エネルギー、燃料電池、固体イオニクス
1995.04.
ナノ構造へテロ界面を利用した新しい無機材料設計
キーワード:コロイド法、ナノサイズ効果, 界面効果
1995.04.
機能性セラミックス中の電子・イオン欠陥の定量的制御
キーワード:欠陥化学、化学熱力学、導電材料
1995.04.
従事しているプロジェクト研究
固体酸化物形燃料電池システム要素技術開発
2005.09~2013.02, 代表者:佐々木一成, 九州大学, (独)NEDO技術開発機構
固体酸化物形燃料電池の化学的劣化解析と加速試験法開発.
固体高分子形燃料電池ナノネットワーク構造電極触媒の材料設計指針の確立
2008.04~2012.03, 代表者:佐々木一成, 九州大学
革新的な高性能高耐久性の固体高分子形燃料電池の開発を目指して、当研究室オリジナルの研究成果である酸化物半導体や炭素ナノ繊維に担持した電極触媒を出発材料として、電気化学的安定性および形状安定性を付与した理想的なナノネットワーク構造を有する電極触媒材料を開発するとともに、その電子・イオン・ガス輸送パス設計と高耐久化に向けた材料設計指針を確立する。.
特定領域研究 「高温ナノイオニクスを基盤とするヘテロ界面制御フロンティア」
2005.04~2007.03, 代表者:佐々木一成, 九州大学, 文部科学省
固体高分子形燃料電池の電極触媒超微粒子におけるナノ電気化学.
固体高分子形燃料電池要素技術開発等事業
2000.12~2005.03, 代表者:佐々木一成, 九州大学, (独)NEDO技術開発機構
ナノ構造無機電極触媒の開発.
戦略的創造研究推進事業
2002.10~2007.03, 代表者:持田勲, 九州大学, (独)科学技術振興機構
表面最適化炭素ナノ繊維の新規環境触媒機能 
ナノ炭素材料を担体とした燃料電池電極触媒における触媒機能.
戦略的創造研究推進事業
2002.10~2007.03, 代表者:寺岡靖剛, 九州大学, (独)科学技術振興機構
ナノ構造制御ペロブスカイト触媒システムの構築 
固体酸化物形燃料電池用ペロブスカイトカソード材料の研究.
科学研究費補助金・基盤研究B
2003.04~2005.03, 代表者:佐々木一成, 日本学術振興会
フレキシブルな燃料電池実現のための微細構造制御電極材料の創製.
九州大学教育研究プログラム・研究拠点形成プロジェクト(Cタイプ)
2002.04~2004.03, 代表者:佐々木一成, 九州大学
次世代のソフトエネルギ−に関する最先端教育プログラムの構築.
民間等との共同研究
2003.04~2009.03, 代表者:佐々木一成, 九州電力
固体酸化物形燃料電池の発電特性に関する研究.
民間等との共同研究B
2001.04~2003.03, 代表者:佐々木一成, 九州電力
固体酸化物形燃料電池発電特性への燃料不純物の影響評価.
即効型産業技術研究助成事業
2000.03~2001.03, 代表者:佐々木一成, 新エネルギー・産業技術総合開発機構
ゼロエミッションエネルギーシステムの中核となるバイオマス・
リサイクル資源を高効率に利用可能な燃料電池の開発.
研究業績
主要著書
主要原著論文
1. Yasuharu Kawabata, Tatsuya Nakajima, Kazuo Nakamura, Toru Hatae, Yuya Tachikawa, Shunsuke Taniguchi, Yoshio Matsuzaki, Kazunari Sasaki, Proposal of ultra-high-efficiency zero-emission power generation systems, Journal of Power Sources, 10.1016/j.jpowsour.2019.227459, 448, 2020.02, [URL], Solid oxide fuel cell (SOFC) and protonic ceramic fuel cell (PCFC) have strong features that enables high efficiency power generation and efficient CO2 capture. Applying these technologies to the fossil fuel and biomass power generation, we can realize ultra-high efficiency zero-emission power generation by capturing liquefied CO2 (LCO2) for easy transport and utilization (CCU) or storage(fossil fuel CCS and bio-energy CCS: BECCS). In this study, we propose LCO2 capture ultra-efficient power generation systems consist of multi-stage SOFC/PCFC, oxygen or hydrogen transport membrane, CO2 cooling and liquidizing units driven by exhaust heat and generated power by fuel cells. Net power generation efficiency is estimated through heat mass balance analysis. As the results for natural gas, proposed PCFC system is suitable and expected 64.7 %LHV net power generation efficiency with more than 99 vol% LCO2 capture. For biogas direct supply case, net power generation efficiency of proposed PCFC system is 57%LHV with 99 vol% capture of CO2 in the air. These results indicates that proposed systems have quite strong potential that enables ultra-high efficient CO2-free fossil fuel power generation with CCS and CO2-reduction biomass fuel power generation with BECCS..
2. Shotaro FUTAMURA, Aki MURAMOTO, Yuya TACHIKAWA, Junko MATSUDA, Stephen M. LYTH, Yusuke SHIRATORI, Shunsuke TANIGUCHI, Kazunari SASAKI, SOFC Anodes Impregnated with Noble Metal Catalyst Nanoparticles for High Fuel Utilization, Intl. J. Hydrogen Energy, 10.1016/j.ijhydene.2019.01.223, 44, 16, 8502-8518, 44(16), pp. 8502-8518, 2019.03.
3. Yoshiki NAKAZATO, Daiki KAWACHINO, Zhiyun NODA, Junko MATSUDA, Stephen M. LYTH, Akari HAYASHI, Kazunari SASAKI, PEFC Electrocatalysts Supported on Nb-SnO2 for MEAs with High Activity and Durability: Part I. Application of Different Carbon Fillers, J. Electrochem. Soc., 10.1149/2.0311814jes, 165, 14, F1154-F1163, 165 (14), pp. F1154-F1163, 2018.10.
4. Shohei MATSUMOTO, Masaru NAGAMINE, Zhiyun NODA, Junko MATSUDA, Stephen M. LYTH, Akari HAYASHI, Kazunari SASAKI, PEFC Electrocatalysts Supported on Nb-SnO2 for MEAs with High Activity and Durability: Part II. Application of Bimetallic Pt-Alloy Catalysts, J. Electrochem. Soc., 10.1149/2.0321814jes, 165, 14, F1164-F1175, 165 (14), pp. F1164-F1175, 2018.10.
5. Junko MATSUDA, Tatsuya KAWASAKI, Shotaro FUTAMURA, Tsutomu KAWABATA, Shunsuke TANIGUCHI, Kazunari SASAKI, In situ Transmission Electron Microscopic Observations of Redox Cycling of a Ni–ScSZ Cermet Fuel Cell Anode, Microscopy, 10.1093/jmicro/dfy025, 67, 5, 251-258, 67 (5) , pp. 251-258, 2018.05.
6. Makito OKUMURA, Zhiyun NODA, Junko MATSUDA, Yuya TACHIKAWA, Masamichi NISHIHARA, Stephen M. LYTH, Akari HAYASHI, Kazunari SASAKI, Correlating Cathode Microstructure with PEFC Performance using FIB-SEM and TEM, J. Electrochem. Soc., 10.1149/2.0581709jes, 164, 9, F928-F934, 164 (9), pp. F928-F934, 2017.07.
7. Xuesong SHEN, Kazunari SASAKI, Robust SOFC anode materials with La-doped SrTiO3 backbone structure, Int. J. Hydrogen Energy, 10.1016/j.ijhydene.2016.08.024, 41, 38, 17044-17052, 2016.10.
8. Thomas BAYER, Benjamin V. CUNNING, Roman SELYANCHYN, Masamichi NISHIHARA, Shigenori FUJIKAWA, Kazunari SASAKI, Stephen M. LYTH, High Temperature Proton Conduction in Nanocellulose Membranes: Paper Fuel Cells, Chem. Mater., 10.1021/acs.chemmater.6b01990, 28, 13, 4805-4814, 2016.07.
9. Yuya TACHIKAWA, Junki SUGIMOTO, Masaru TAKADA, Tsutomu KAWABATA, Stephen M. LYTH, Yusuke SHIRATORI, Kazunari SASAKI, In Operando Visualization of SOFC Electrodes by Thermography and Visible Light Imaging, ECS Electrochemistry Letters, 4, 11, F61-F64, 2015.08.
10. Takeshi DAIO, Aleksandar STAYKOV, Limin GUO, Jianfeng LIU, Masaki TANAKA, Stephen M. LYTH, Kazunari SASAKI, Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO2 Supports, SCIENTIFIC REPORTS, 10.1038/srep13126, 5, 13126, 2015.08.
11. Yoshio MATSUZAKI, Yuya TACHIKAWA, Takaaki SOMEKAWA, Toru HATAE, Hiroshige MATSUMOTO, Shunsuke TANIGUCHI, Kazunari SASAKI, Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells, SCIENTIFIC REPORTS, 5, 12640, 2015.07, 本研究は、燃料電池の高効率化に向けたシステム解析で、市販の燃料電池と比べ、約3割の発電効率向上が望めることを示した。高温型燃料電池システムにおいて、システム安定作動のために、発電に使用しなかった燃料を構造改良で活用しつつ、材料変更による燃料の希釈化を防ぐことで、相乗的な性能向上効果が得られ、供給した燃料のエネルギーの約80%を電気に変換可能である事を示すことができた。.
12. Takeshi DAIO, Thomas BAYER, Tatsuya IKUTA, Takashi NISHIYAMA, Koji TAKAHASHI, Yasuyuki TAKATA, Kazunari SASAKI, Stephen M. LYTH, In-Situ ESEM and EELS Observation of Water Uptake and Ice Formation in Multilayer Graphene Oxide, SCIENTIFIC REPORTS, 10.1038/srep11807, 5, 11807, 2015.07.
13. Yoshio MATSUZAKI, Yuya TACHIKAWA, Takaaki SOMEKAWA, Toru HATAE, Hiroshige MATSUMOTO, Shunsuke TANIGUCHI, Kazunari SASAKI, Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells, SCIENTIFIC REPORTS, 10.1038/srep12640, 5, 12640, 2015.07.
14. Kazunari SASAKI, Zhiyun NODA, Takuya TSUKATSUNE, Kohei KANDA, Yuma TAKABATAKE, Yohei NAGAMATSU, Takeshi DAIO, Stephen M. LYTH, Akari HAYASHI, Alternative Oxide-supported PEFC Electrocatalysts, ECS Transactions, 64, 3, 221-227, 2014.10.
15. Yoshinori KOBAYASHI, Kenichiro KOSAKA, Kazuo TOMIDA, Norihisa MATAKE, Kohei ITO, Kazunari SASAKI, Start-Up Characteristics of Segmented-In-Series Tubular SOFC Power Modules Improved by Catalytic Combustion at Cathodes, Fuel Cell, 14, 1028-1035, 2014.09.
16. M. Hanasaki, C. Uryu, T. Daio, T. Kawabata, Y. Tachikawa, S. M. Lyth, Y. Shiratori, S. Taniguchi, K. Sasaki, SOFC durability against standby and shutdown cycling, Journal of the Electrochemical Society, 10.1149/2.0421409jes, 161, 9, F850-F860, 2014.09, [URL], To simulate realistic operating conditions in SOFC systems, we investigate the influence of thermal cycling on the performance of electrolyte-supported planar SOFCs. Thermal cycling is often associated with interruption of fuel supply, with three main modes; hot standby, cold standby, and shutdown. Cell performance degradation is most significant during shutdown cycles. Nickel oxidation and agglomeration are more pronounced when SOFCs are subjected to lower temperatures for longer periods of time, leading to significant performance degradation. Ostwald ripening at the anode leads to degradation as Ni grains increase in size with cycling. Ni particle precipitation on the anode zirconia grains and along electrolyte grain boundaries is found for the first time in shutdown cycling tests. When H2S is mixed with the fuel, the internal reforming reactions and electrode reactions are inhibited by sulfur poisoning of the Ni anodes, accelerating degradation. The SOFC cycling degradation mechanisms are discussed in detail..
17. Zhiyun NODA, Kyohei HIRATA, Akari Hayashi, Shunsuke TANIGUCHI,, Naoto NAKAZATO, Atsuko SEO, Isamu YASUDA, Seiji ARIURA, Hidetoshi SHINKAI, Kazunari SASAKI, PEFC-type Impurity Sensors for Hydrogen Fuels., Intl. J. of Hydrogen Energy, 10.1016/j.ijhydene.2012.08.062, 37, 21, 16256-16263, 2012.09.
18. Kazunari SASAKI, Kengo HAGA, Tomoo YOSHIZUMI, Dasuke MINEMATSU, Eiji YUKI, Runru LIU, Chie URYU, Toshihiro OSHIMA, Teppei OGURA, Yusuke SHIRATORI, Kohei ITO, Michihisa KOYAMA, Katsumi YOKOMOTO, Chemical Durability of SOFCs: Influence of impurities on long-term performance., J. of Power Sources, 196, 22, 9130-9140, 2011.11.
19. A. Masao, S. Noda, F. Takasaki, K. Ito, K. Sasaki, Carbon-free pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells, Electrochemical and Solid-State Letters, 10.1149/1.3152325, 12, 9, 2009.07, [URL], Carbon-free Pt-based electrocatalysts supported on semiconducting SnO 2 (Pt/ SnO2) have been developed for polymer electrolyte fuel cells (PEFCs) by various electrochemical and microstructural characterizations. Pt/ SnO2 exhibited comparable current-voltage characteristics to conventional Pt electrocatalysts and, in particular, a considerable tolerance against 10,000 cycles of voltages up to 0.9 and 1.3 VRHE (RHE denotes reversible hydrogen electrode) vs the RHE. These results indicate that the carbon-free oxide-supported Pt/ SnO2 can be a promising alternative electrocatalyst with long-term durability against voltage cycling up to higher potentials, as a possible fundamental solution to the PEFC degradation caused by carbon support corrosion..
20. K. Haga, S. Adachi, Yusuke Shiratori, Kohei Ito, Kazunari Sasaki, Poisoning of SOFC anodes by various fuel impurities, Solid State Ionics, 10.1016/j.ssi.2008.02.062, 179, 27-32, 1427-1431, 2008.09, [URL], Poisoning effects by various fuel impurities, including H2S, CH3SH, COS, Cl2, and siloxane, to Ni-ScSZ cermet anodes have been analyzed and compared. Degradation of cell performance caused by these impurities was characterized by measuring cell voltage and anode polarization at a constant current density of 0.2 Acm- 2 for humidified H2 and CH4 fuels. Poisoning for hydrogen-based fuels containing 5 ppm sulfur compounds, H2S, CH3SH, and COS, caused an initial cell voltage drop of about 15 mV at 1000 °C. The initial voltage drop was independent of the kind of sulfur compounds, whereas in the case of poisoning by CH3SH, an additional gradual decrease in cell voltage was clearly detected after the initial voltage drop. Thermochemical calculation and FESEM-EDX analysis also indicated that the poisoning by Cl2 caused the formation of nickel nano-particles on zirconia grains via NiCl2 (g), while the poisoning by siloxane formed segregated silica (SiO2) in porous cermet anodes..
21. Kazunari Sasaki, K. Susuki, A. Iyoshi, M. Uchimura, N. Imamura, H. Kusaba, Y. Teraoka, H. Fuchino, K. Tsujimoto, Y. Uchida, N. Jingo, H 2S poisoning of solid oxide fuel cells, Journal of the Electrochemical Society, 10.1149/1.2336075, 153, 11, 2006.10, [URL], The influence of H2 S fuel impurity on power generation characteristics of solid oxide fuel cells (SOFCs) has been analyzed by measuring cell voltage at a constant current density, as a function of H2 S concentration, operational temperature, and fuel gas composition. Reversible cell voltage change was observed around 1000°C, while fatal irreversible degradation occurred at a lower operational temperature, at a higher H2 S concentration, and at a lower fuel H2 CO ratio. Sulfur tolerance of SOFCs was improved by using Sc2 O3 -doped Zr O2 instead of Y2 O3 -doped Zr O2 as electrolyte and/or as electrolyte component in the anode cermets. It has been found that H2 S poisoning consists of at least two stages, i.e., an initial cell voltage drop within a short time period to a metastable cell voltage, followed by a gradual larger cell voltage drop. Possible H2 S poisoning processes are discussed..
22. K. Sasaki, K. Watanabe, K. Shiosaki, K. Susuki, and Y. Teraoka, Multi-fuel Capability of Solid Oxide Fuel Cells, JOURNAL OF ELECTROCERAMICS, 10.1007/s10832-004-5174-z, 13, 1-3, 669-675, 13 (1-3): 669-675 2004, 2004.11.
23. K. Sasaki, K. Shinya, S. Tanaka, Y. Kawazoe, T. Kuroki, K. Takata, H. Kusaba, and Y. Teraoka, Nanostructured PEFC Electrode Catalysts Prepared via In-situ Colloidal Impregnation, Mater. Res. Soc. Symp. Proc., 835, 241-246, Vol. 835, 241-46 (2004)., 2004.11.
24. K. Sasaki, K. Watanabe, and Y. Teraoka, Direct-alcohol SOFCs: Current-voltage characteristics and fuel gas compositions, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 10.1149/1.1756884, 151, 7, A965-A970, 151 (7): A965-A970 2004, 2004.07.
25. K. Sasaki and Y. Teraoka, Equilibria in fuel cell gases - II. The C-H-O ternary diagrams, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 10.1149/1.1577338, 150, 7, A885-A888, 150 (7): A885-A888 JUL 2003, 2003.07.
26. K. Sasaki and Y. Teraoka, Equilibria in fuel cell gases - I. Equilibrium compositions and reforming conditions, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 10.1149/1.1577337, 150, 7, A878-A884, 150 (7): A878-A884 JUL 2003, 2003.07.
27. K. Sasaki and J. Maier, Low-temperature defect chemistry of oxides. II. Analytical relations, JOURNAL OF APPLIED PHYSICS, 10.1063/1.371542, 86, 10, 5434-5443, 86 (10): 5434-5443 NOV 15 1999, 1999.11.
28. K. Sasaki and J. Maier, Low-temperature defect chemistry of oxides. I. General aspects and numerical calculations, JOURNAL OF APPLIED PHYSICS, 10.1063/1.371541, 86, 10, 5422-5433, 86 (10): 5422-5433 NOV 15 1999, 1999.11.
29. K. Sasaki, J. P. Wurth, R. Gschwend, M. Gödickemeier, L. J. Gauckler, Microstructure-property relations of solid oxide fuel cell cathodes and current collectors cathodic polarization and ohmic resistance, Journal of the Electrochemical Society, 10.1149/1.1836476, 143, 2, 530-543, 1996.02, [URL], Microstructure, cathodic polarization, and ohmic resistance on the cathode side of ZrO2-based solid oxide fuel cells have been studied for the intermediate temperature operation range between 700 and 900°C. Starting powder characteristics, powder calcination temperature, and sintering temperature strongly influence the final microstructure of cathodes. Electrochemical performance depends on these processing parameters as well as on the cathode thickness and the contact spacing of current collectors. A decrease in effective electrode area occurs both on the microscopic level with coarse and inhomogeneous cathode microstructure and on the macroscopic level with a wide contact spacing of the current collectors. The smaller effective electrode area causes inhomogeneous current density distribution and results consequently in higher ohmic losses originating from the electrolyte and higher cathodic polarization. These losses are evaluated using La0.35Sr0.15MnO3 cathodes with different microstructures and on the ZrO2-8 mole percent Y2O3 electrolyte. The influence of current path constrictions on the ohmic and nonohmic losses is demonstrated using Pt current collectors of different geometric spacings..
30. Kazunari Sasaki, Petr Bohac, Ludwig J. Gauckler, Phase Equilibria in the System ZrO2─InO1.5, Journal of the American Ceramic Society, 10.1111/j.1151-2916.1993.tb03661.x, 76, 3, 689-698, 1993.01, [URL], Phase equilibria in the system ZrO2─InO1.5 have been investigated in the temperature range from 800° to 1700°C Up to 4 mol%, InO1.5 is soluble in t‐ZrO2 at 1500°C. The martensitic transformation temperature m→t of ZrO2 containing InO1.5 is compared with that of ZrO2 solid solutions with various other trivalent ions with different ionic radii. The diffusionless c→t′ A phase transformation is discussed. Extended solid solubility from 12.4 ± 0.8 to 56.5 ± 3 mol% InO1.5 is found at 1700°C in the cubic ZrO2 phase. The eutectoid composition and temperature for the decomposition of c‐ZrO2 solid solution into t‐ZrO2+InO1.5 solid solutions were determined. A maximum of about 1 mol% ZrO2 is soluble in bcc InO1.5 phase. Metastable supersaturation of ZrO2 in bcc InO 1.5 and conditions for phase separation are discussed..
31. K. Sasaki, T. Maruyama, T. Iseki, Helium release from neutron-irradiated SiC containing 10B isotope, Journal of Nuclear Materials, 10.1016/0022-3115(89)90604-1, 168, 3, 349-351, 1989.12, [URL].
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
学会活動
所属学会名
自動車技術会
水素エネルギー協会
日本機械学会
Electrochemical Society
International Society on Solid State Ionics
Materials Research Society
Europea Fuel Cell Forum
電気化学会
電池技術委員会
日本セラミックス協会
燃料電池開発情報センター
触媒学会
SOFC研究会
学協会役員等への就任
2017.02~2020.01, 電気化学会九州支部, 支部幹事.
2017.02~2018.02, 電気化学会九州支部, 支部幹事.
2015.01~2016.01, 電気化学会九州支部, 幹事.
2011.01, 固体イオニクス学会, 幹事.
2008.04~2010.03, 水素エネルギー協会, 評議員.
2010.04~2022.03, 水素エネルギー協会, 理事.
2006.04~2008.03, 水素エネルギー協会, 評議員.
2006.01~2006.12, 電気化学会九州支部, 幹事.
学会大会・会議・シンポジウム等における役割
2017.07.23~2017.07.28, 15th International Symposium on Solid Oxide Fuel Cells (SOFC-XV), Chair, SOFC Cathodes II.
2016.07.05~2016.07.08, 12th EUROPEAN SOFC & SOE FORUM 2016, 座長(Chairmanship).
2016.03.24~2016.03.27, 日本化学会第96春季年会(2016) アドバンスト・テクノロジー・プログラム(ATP) 燃料電池・エネルギーキャリア・水素社会, オーガナイザー.
2015.10.11~2015.10.15, 228th ECS Meeting, 座長(Chairmanship).
2015.07.26~2015.07.31, The ECS Conference on Electrochemical Energy Conversion & Storage with SOFCXIV, International Conference Convening in Glasgow, 座長(Chairmanship).
2014.03.15~2014.03.17, 電気化学会第82回大会, 座長(Chairmanship).
2015.03.26~2015.03.29, 日本化学会第95春季年会(2015) アドバンスト・テクノロジー・プログラム(ATP) 資源・次世代エネルギーと環境, オーガナイザー.
2014.03.29~2014.03.31, 電気化学会第81回大会, 座長(Chairmanship).
2014.03.27~2014.03.30, 日本化学会第94春季年会(2014) アドバンスト・テクノロジー・プログラム(ATP) 燃料電池・水素エネルギー技術, オーガナイザー.
2013.10.27~2013.11.01, 224th ECS Meeting, 座長(Chairmanship).
2013.03.29~2013.03.31, 電気化学会第80回大会, 座長(Chairmanship).
2013.03.22~2013.03.25, 日本化学会第93春季年会(2013) アドバンスト・テクノロジー・プログラム(ATP) 燃料電池・水素エネルギー技術, オーガナイザー.
2012.11.14~2012.11.16, 第53回電池討論会, 実行委員.
2012.10.14~2012.10.17, 第2回CSJ化学フェスタ2012, オーガナイザー(セッション:化学蓄エネの最先端技術動向―再生可能エネルギーの高効率利用に向けて―).
2012.03.29~2012.03.31, 電気化学会第79回大会, 座長(Chairmanship).
2012.03.25~2012.03.28, 日本化学会第92春季年会(2012) アドバンスト・テクノロジー・プログラム(ATP) 燃料電池・水素エネルギー技術, オーガナイザー.
2012.02.02~2012.02.02, Fuel Cell and Hydrogen Production Symposium, International Hydrogen Energy Development Forum, 座長(Chairmanship).
2011.11.11~2011.11.11, 水素エネルギー先端技術展2011 燃料電池・水素エネルギー専門技術セミナー, 座長(Chairmanship).
2011.10.17~2011.10.20, 第52回電池討論会, 座長(Chairmanship).
2011.09.11~2011.09.16, The 62nd Meeting of the International Society of Electrochemistry, 座長(Chairmanship).
2011.07.03~2011.07.08, 18th International Conference on Solid State Ionics, 座長(Chairmanship).
2011.05.01~2011.05.06, 219th ECS Meeting, 座長(Chairmanship).
2007.03.01~2010.03.31, 電気化学会, 座長(Chairmanship).
2006.11.01~2010.03.31, 電池討論会, 座長(Chairmanship).
2005.11.01~2005.11.01, 電池討論会, 座長(Chairmanship).
2005.10.01~2005.10.01, 工業物理化学講習会(電気化学会九州支部主催), 座長(Chairmanship).
2005.07.01~2005.07.01, International Conference on Solid State Ionics, 座長(Chairmanship).
2005.05.01~2005.05.01, 燃料電池シンポジウム, 座長(Chairmanship).
2005.05.01~2005.05.01, International Symposium on Solid Oxide Fuel Cells, 座長(Chairmanship).
2005.04.01~2005.04.01, 電気化学会, 座長(Chairmanship).
2005.03.01~2010.03.31, 燃料電池要素研究分科会, 座長(Chairmanship).
2004.12.01~2010.03.31, SOFC研究発表会, 座長(Chairmanship).
2013.01.28~2013.01.28, 水素先端世界フォーラム2013 Fuel Cell and Hydrogen Production Symposium: “Alternative Materials and Devices”, 主催.
2011.02.02~2011.02.02, 水素先端世界フォーラム2012 Fuel Cell and Hydrogen Production Symposium, 主催.
2011.02.03~2011.02.03, 水素先端世界フォーラム2011 Fuel Cell Symposium, 主催.
2006.07, European Fuel Cell Forum, International Advisory Board Member.
2006.11.01~2006.11.01, 固体イオニクス討論会, 実行委員会委員.
2006.10.01~2006.10.01, 水素エネルギー協会 定例研究会, 企画.
2003.11.01~2003.11.01, 電池討論会, 実行委員会 委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2006年度
2005年度 12 
その他の研究活動
海外渡航状況, 海外での教育研究歴
ドイツ・マックスプランク固体研究所(MPI、客員研究員), Germany, 1995.04~1999.09.
スイス連邦工科大学(ETH、助手および博士研究員), Switzerland, 1990.10~1995.03.
スイス連邦工科大学(ETH、交換留学生), Switzerland, 1989.10~1990.09.
外国人研究者等の受入れ状況
2011.04~2011.10, Université Pierre et Marie Curie, France.
2011.04~2011.10, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.
2009.07~2009.08, 2週間以上1ヶ月未満, Ho Chi Minh City University of Technology, Vietnam, 政府関係機関.
2009.01~2009.02, 2週間以上1ヶ月未満, Ho Chi Minh City University of Technology, Vietnam, 政府関係機関.
2006.01~2006.09, 1ヶ月以上, Korean Institute of Science and Technology, Korea, 外国政府・外国研究機関・国際機関.
受賞
令和元年度地球温暖化防止活動環境大臣表彰, 環境省, 2019.12.
Best Presentation Award, The 20th International Research Conference, 2018.11.
研究活動表彰, 九州大学, 2016.11.
研究活動表彰, 九州大学, 2015.11.
Poster Award, 20th International Conference on Solid State Ionics, 20th International Conference on Solid State Ionics, 2015.06.
研究活動表彰, 九州大学, 2014.11.
Poster Award, 8th ECNP International Conference on Nanostructured Polymers and Nanocomposites, European Center for Nanostructured Polymers (ECNP), 2014.09.
研究活動表彰, 九州大学, 2013.11.
研究活動表彰, 九州大学, 2012.11.
電気化学会第77回ポスター賞, 電気化学会, 2010.03.
Christian Friedrich SCHOENBEIN Medal (Contribution to Science Medal), European Fuel Cell Forum, 2008.07.
総長顕彰, 九州大学, 2008.05.
総長顕彰, 九州大学, 2007.05.
電気化学会第74回大会ポスター賞, 電気化学会, 2007.03.
Ribbon Award, Materials Research Society, 2005.03.
第一回電子セラミックス研究奨励賞, 日本セラミックス協会, 1998.10.
研究資金
寄附金の受入状況
2004年度, (財)加藤科学振興会, 研究助成.
2004年度, (財)旭硝子財団, 自然科学系研究助成.
2003年度, (財)旭硝子財団, 自然科学系研究助成.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」