九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
加藤 喜峰(かとう よしみね) データ更新日:2022.07.01

准教授 /  工学研究院 材料工学部門 材料機能工学


主な研究テーマ
太陽電池材料(Solar Cell)の研究
キーワード:太陽電池, Solar cell
2009.04.
超音波を利用した水素センサー、ガス物性計測等
キーワード:水素センサー
2006.09.
Si基板上の3C-SiC/ダイヤモンド薄膜成長およびパワーデバイスへの応用
キーワード:SiC, ダイヤモンド
2004.04.
水素発生・吸蔵材料の研究
キーワード:水素吸蔵材料
2013.01.
りん光・蛍光新材料の研究及びデバイスへの応用
キーワード:りん光、蛍光、長残光
2007.07~2016.03.
鋼板プレス成型における窒化またはDLCコーティング等に関する研究
キーワード:鋼板プレス成型, コーティング
2010.04~2013.03.
燃料電池の電極に関する研究
キーワード:燃料電池
2010.04~2011.03.
レーザーCVDによるSn結晶の核生成
キーワード:レーザーCVD, 結晶核形成、
2006.04~2009.03.
DLC(Diamond like carbon)薄膜、ポリイミド膜への非接触配向
キーワード:DLC薄膜, ポリイミド膜,配向
1998.01~2010.03.
従事しているプロジェクト研究
塗布型新太陽電池の研究
2011.05~2019.03, 代表者:加藤 喜峰.
高速・簡易設置型無線式水素濃度監視ネットワークシステム
2013.04~2014.03, 工学研究院, 福岡県、九州計測器 (日本)
これまで開発してきた超音波式および調光式水素検知法に無線計測ネットワーク技術を組み合わせた監視システムを提案している。本事業では、このシステムの市場性・ニーズを調査する。併せて 実用化のための課題の抽出と利用範囲を拡大するための検討も行う。.
携帯用高速水素濃度検出器の研究開発
2010.03~2013.03, 工学研究院, 福岡県、オリイメック株式会社 (日本)
本研究開発は、高速に応答し携帯できる小型で安価な超音波式水素濃度検出器の実用化を目指す。
実用化目標として、作業服ポケットに入る程度の大きさと軽さで、爆発限界に達する前の水素濃度を0.1%程度から5%程度までの範囲を測定して警報を出し、さらに計測反応時間をミリ秒オーダー程度にすることを目指す。
.
鋼板表面改質による超ハイテンの成形性向上に関する先導探索
2010.03~2013.03, 工学研究院, JFEスチール (日本)
種々の表面改質技術により、摩擦係数を画期的に低減し、超ハイテンの絞り成形などの成形性を飛躍的に向上させる可能性を先導探索する。.
21世紀COE 「分子情報科学の機能イノベーション」
2002.04~2007.03, 代表者:新海 征治, 工学研究院, 日本
化学的手法により創出された素構造体や超構造体はナノスケールの情報材料として飛躍的な技術革新の原動力となる。本プログラムでは、九州大学の物質系専攻群ならびに化学系グループによる物質・分子材料に関する先導的かつ有機的な研究教育成果を基として、関連部局(芸術工学府、総合理工学府、理学府)の協力と連携により、分子および単一構造体の情報機能を基本要素とした高精度・高感度な情報処理を可能にする分子材料を開拓し、「分子情報科学」の概念を創出する。さらに、事業を通して、部局・研究者間の連携を強化し、21世紀を先導する若手研究者を育成する。.
研究業績
主要著書
1. 加藤 喜峰, 安達 千波矢, 蛍光・りん光新材料の熱励起による逆項間交差, シーエムシー出版, 2010.08.
2. Yoshimine Kato, “A Diamond-like Carbon film applied as an alignment layer for LCDs”:
in Diamond and Related Materials Research
, Nova Science Publishers, 2008.05.
主要原著論文
1. Huan Zhu, Ting Pan, Ryo Sato, Lusato Majula, Kwati Leonard, Hiroshige Matsumoto, Yoshimine Kato, TiO2/p-Si Paste Heterojunction Fabricated by Rapid Thermal Annealing, Applied Surface Science, https://doi.org/10.1016/j.apsusc.2021.151003, 569, 151003, pp.1-9, 2021.09.
2. Yusuke Kuboki, Huan Zhu, Morihiro Sakamoto, Hiroshige Matsumoto, Kungen Teii, Yoshimine Kato, Low temperature annealing of nanocrystalline Si paste for pn junction formation, Materials Science in Semiconductor Processing, https://doi.org/10.1016/j.mssp.2021.106093, 135, 106093-7ページ, 2021.07.
3. Huan Zhu, Yusuke Kuboki, Morihiro Sakamoto, Yoshimine Kato, Effect of Low Temperature Annealing on pn Junction Formation using Si Paste, Proc. of 2021 5th IEEE Electron Devices Technology and Manufacturing (EDTM 2021), IEEE Xplore, 10.1109/EDTM50988.2021.9420845, 10-12, 2021.05.
4. 松田昭信、川邊武俊、加藤喜峰, 超音波による冷媒ガスの高速濃度測定, 日本冷凍空調学会論文集, DOI:10.11322/tjsrae.20-51_EM_OA, 1-7, 2021.02, [URL].
5. Akitoshi Matsuda, Yoshimine Kato, Model-based Sensor System for Measuring Gas Concentration by Ultrasound, Proc. of 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE): IEEE Xplore, 10.1109/GCCE50665.2020.9291956, 471-475, 2020.12, In this study, a novel system using ultrasound was developed to instantly measure the gas concentration of two types of mixed gases: diatomic and polyatomic gases, which need nonlinear equations to calculate. This system incorporates a set of ultrasound sensors, arithmetic circuits, and a thermometer to accurately measure and calculate the concentration of the gases. Hardware was developed for the arithmetic circuits that numerically analyzed the newly developed nonlinear equations. To evaluate the accuracy and the calculation speed of the hardware in the early stage of design, developing effective design methods was critical. These are described using a model-based design method..
6. Huan Zhu, Morihiro Sakamoto, Ting Pan, Takaya Fujisaki, Hiroshige Matsumoto, Kungen Teii, Yoshimine Kato, Rapid Thermal Annealing of Si paste film and pn-junction formation, Nanotechnology, 10.1088/1361-6528/ab9aed, 31, 38, 385202, 2020.07, A Si nanoparticle paste has been studied to form a Si film on a substrate. Rapid thermal
annealing (RTA) was conducted in order to recrystallize the Si paste which were prepared by a
planetary ball milling grinding n-doped or p-doped Si chips. It was possible to minimize the
oxidation during the melting process of Si nanoparticles with this RTA even at 1200 ◦C in 1 s.
Lowering of the melting temperature appears to be due to the size effect and release of surface
energy from the Si nanoparticles. RTA was conducted in an infrared furnace with temperatures
varying from 1150 to 1300 ◦C. Si pn homo-junction structure was also fabricated by coating
p-type followed by n-type Si pastes on a carbon substrate. Typical rectifying characteristics and
slight photo-induced current was observed..
7. Mahjabin Taskin, Takuya Kido, Masahiro Inoue、Yoshimine Kato, Ultrasound propagation in two-layer gas flow, Int. J. Hydrogen Energy,, https://doi.org/10.1016/j.ijhydene.2019.08.192, 44, 27626-27634, 2019.09, The ultrasonic signal propagation in two-layer gas flow was studied. The intensity degradation
of the signal was observed while the signal was propagating through the airhydrogen-
air two-layer gas flowing system. The concentration of flowing hydrogen (H2)
gas was measured using ultrasound from the exterior of the pipe, and it was calculated
that the intensity degradation of signal did not simply depend on the H2 concentration,
however, the intensity varied every second. Schlieren photography was taken to visualize
the motion of H2 gas after injecting into the flowing air of 2 m/s. It was observed that high
concentration H2 gas was flowing in the middle of the airflow without quick diffusion into
the air. A two-dimensional air-H2-air gas flow model was considered where 100% H2 was
flowing in the middle of the airflow, and the gas layers were separated by two fluctuated
interfaces. According to the calculation using this model, only limited conditions of the
signals can reach to the receiver due to the refraction at the fluctuating air-H2-air gas interfaces
while propagating. It was found that the receiver could hardly detect the signals;
hence, the intensity of the signal looked degraded..
8. Mahjabin Taskin, 内海銀志朗、加藤 喜峰, Observation of Ultrasonic Signal and Measurement of H2 Concentration from the Exterior of a Metal Pipe, Int. J. Hydrogen Energy,, https://doi.org/10.1016/j.ijhydene.2019.06.159, 44, 41, 23503-23512, 2019.08, Concentration of H2 gas in a stainless steel (SUS) pipe is measured by using ultrasound
from the exterior of a pipe without making a hole. Gas concentration is calculated by the
variation of ultrasound speed detected. A sound absorbing material is put on the outer
surface of the SUS pipe to reduce the ultrasonic signal noise circulating through the shell of
the SUS pipe. Then it is possible to measure the gas concentration by observing the
airborne signal passing through the SUS pipe. Propagation of ultrasound wave in SUS pipe
is also simulated by the finite-difference-time-domain method that could explain the ultrasound
propagation signals in the SUS pipe..
9. Mahjabin Taskin, 加藤 喜峰, Instant Gas Concentration Measurement Using Ultrasound from Exterior of a Pipe, IEEE Sensors Journal, 19, 11, 4017-4024, 2019.05, Concentration of a gas flowing inside a pipe was
measured by using ultrasound from the exterior of a pipe without
extracting the gas from the pipe. The concentration of the gas
can be measured based on speed variation of the ultrasound
traveling inside the pipe. Drilling a hole in the pipe to extract
the gases is not necessary for the gas concentration measurement.
In this paper, the concentration of hydrogen gas in the air was
measured accurately while the air was flowing inside the pipe.
Various airflow speeds were examined, and it was estimated that
it is possible to measure the gas concentration for more than
about 60 m/s of the airflow rate. The response time for measuring
gas concentration was less than 0.1 s..
10. Yan Li, Hiroshi Inokuchi, Takahiro Orita, Kunihiko Maejima, Kensuke Nakashima, Satoshi Ooue, Hiroshige Matsumoto, Yoshimine Kato, pn junction formation by Si paste coated on metal substrates, Journal of Materials Science: Materials in Electronics, https://doi.org/10.1007/s10854-019-00980-3, 1-8, 2019.02, In this work, p- and n-type Si pastes were prepared in a way by utilizing a planetary ball miller to pulverize Si source material.
pn homojunction was formed by coating Si pastes onto metal substrates, followed by annealing under Ar or Ar + H2
atmosphere. The optimal annealing temperature was found to be around 1050 °C that exhibits the lowest resistivity. A typical
rectifying property of diode with small photovoltaic was observed for the device fabricated. It is anticipated that Si pastes
could have potential for low cost device fabrication such as solar cells. All Cz Si ingot growth procedures could be skipped,
consequently it is expected that the manufacturing cost for solar cell can be greatly reduced..
11. Mahjabin Taskin, 木戸 拓哉, 加藤 喜峰, Flowing H2 Gas Concentration Measurement Using Ultrasound from Exterior of the Pipe, Proc. of IEEE Sensors 2018, IEEE Xplore, 10.1109/ICSENS.2018.8589539, 1-3, 2018.12, Flowing H2 gas concentration was measured for the first time by using ultrasound. H2 was flowing inside a pipe and the concentration was measured from exterior of the pipe without extracting the gas from the pipe. The concentration measurement was based on speed variation of the ultrasound travelling inside the pipe through the gases. To measure the H2 concentration drilling a hole in the pipe to extract the gases is not necessary. In this study, concentration of the H2 gas in a flowing air was measured accurately inside the pipe. It was found that it is possible to measure the H2 gas concentration variation in more than 50 m/s of the airflow. The response time of measuring the gas concentration was less than 0.1 s..
12. 加藤 喜峰、井上 雅弘, 超音波を利用した水素センシング: ガス濃度の絶対測定および非接触計測, 水素エネルギーシステム, 43, 3, 135-142, 2018.09.
13. N. Shimoda, Yoshimine Kato, KUNGEN TEII, Electrical contacts to nanocrystalline diamond films studied at high temperatures, JOURNAL OF APPLIED PHYSICS, 120, 235706-1-235706-6, 2016.12.
14. M. Goto, R. Amano, N. Shimoda, KUNGEN TEII, Yoshimine Kato, Rectification properties of n-type nanocrystalline diamond heterojunctions to p-type silicon carbide at high temperatures, APPLIED PHYSICS LETTERS, 104, 153113-1-153113-4, 2014.04.
15. 葛晰遥, 平松 智寛, 加藤 喜峰, Hydrogen Gas Concentration Measurement From Exterior of a Pipeline by Using Ultrasonic, Proc. International Conference on Hydrogen Production 2014, A06, 77-77, 1-2F-3, 2014.02.
16. 平松 智寛, 葛晰遥, 藤田秀朗, 古君 修, 加藤 喜峰, 超音波による水素とヘリウムの比熱比測定, 電子情報通信学会技術報告 信学技報, 113, 439, 75-79, 2014.02.
17. N. Shimoda, Yoshimine Kato, KUNGEN TEII, ナノクリスタルダイヤモンド薄膜の各種オーミック電極, SiC及び関連半導体研究 第22回講演会 予稿集, 244-245, 2013.12.
18. 葛晰遥, 平松 智寛, 加藤 喜峰, 超音波による管中の水素ガス濃度測定, 第33回水素エネルギー協会大会(HESS大会) 予稿集, A06, 21-24, 2013.12.
19. 福岡浩彰, 葛晰遥, 加藤 喜峰, 井上 雅弘, 藤田秀朗, 超音波によるガス濃度測定法, 電子情報通信学会技術報告 信学技報, 112, 387, 7-12, 2013.01.
20. Hiroaki Fukuoka, Jinhyuck Jung, Masahiro INOUE, Hideaki FUJITA, Yoshimine Kato, Absolute Concentration Measurement for Hydrogen, Energy Procedia, 29, 283-290, 2012.12.
21. Yoshimine Kato, M. Goto, R. Amano, N. Shimoda, KUNGEN TEII, Electrical Characteristics of 4H-SiC/Nanocrystalline Diamond pn Junctions, Proc. of Diamond and Carbon Materials 2012, 2012, p.O16, 2012.09.
22. Hiroaki Fukuoka, Masahiro Inoue, Yoshimine Kato, and Hideaki Fujita, Gas Concentration Measurment using Ultrasonic, Proc. of 1st IEEE Global Conference on Consumer Electronics 2012 (GCCE2012), 2012, p.67-68 , 2012.10.
23. Hiroaki Fukuoka, Jinhyuck Jung, Hideaki FUJITA, Yoshimine KATO, and Masahiro INOUE, Standard Measurement of Hydrogen Concentration using Ultrasonic, Proc. of 19th World Hydrogen Energy Conference 2012 (WHEC2012), 2012, A105, 2012.06.
24. Ryo Amano, Masaki Goto, Yoshimine Kato, Kungen Teii, Fabrication of 4H-SiC/nanocrystalline diamond pn junctions, Materials Science Forum, Vol.717-720, pp.1009-1012 , 2012.03.
25. Jinhyuck Jung, Masashi SONOYAMA, Hideaki FUJITA, and Yoshimine KATO, The novel hydrogen sensor using ultrasonic, International Congress on Hydrogen Production (ICH2P-11), 2011, 160ELE1- 8, 2011.06.
26. Yoshimine Kato, Masaki Goto, Ryota Sato, Kazuhiro Yamada, Akira Koga, Kungen Teii, Chenda Srey, Satoru Tanaka, Formation of epitaxial 3C-SiC layers by microwave plasma-assisted carbonization, Surface & Coatings Technology, Vol.206, pp. 990-993, 2011.06.
27. M. Goto, A. Koga, K. Yamada, Y. Kato, K. Teii,, Fabrication of n-type nanocrystalline diamond/3C-SiC/p-Si(001) junctions, Materials Science Forum, Vol.679-680, pp. 524-527, 2011.03.
28. Akira KOGA, Kungen TEII, Masaki GOTO, Kazuhiro YAMADA, Yoshimine KATO, Growth and electrical properties of 3C-SiC/nanocrystalline diamond layered films, Jpn. J. Appl. Phys., 50, 1, 01AB08, 2011.01.
29. Masashi SONOYAMA, Hideaki Fujita, Yoshimine Kato, Application of Ultrasonic to a Hydrogen Sensor, IEEE SENSORS 2010 Conference, 2010, 2141-2144, 2010.11.
30. Yasushi Kato, Masatoshi Ito, Yoshimine Kato and Osamu Furukimi, Effect of Si on Precipitation Behavior of Nb-Laves Phase and Amount of Nb in Solid Solution at Elevated Temperature in High Purity 17%Cr-0.5%Nb Steels, MATERIALS TRANSACTIONS, 9, 1531-1535, 2010.09.
31. Yoshimine Kato, Masahiro Inoue, Hideaki Fujita, Hiroshi Baba, Katsumi Ohira, A Hydrogen Sensor using Ultrasonics for Automotive Application, 自動車技術会論文集, 41, 129-133, 2010.01.
32. Ayataka Endo, Mai Ogasawara, Atsushi Takahashi, Daisuke Yokoyama, Yoshimine Kato and Chihaya Adachi, Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes – a novel mechanism for electroluminescence, Advanced Materials, 21, 4802-4806, 2009.11.
33. Yoshimine Kato and Kazuo Sakumoto, Island formation of SiC film on striated Si(001) substrates, Materials Science Forum, Vol.600-603, pp. 227-230, 2009.01.
34. Takayoshi MASAKI, Shinji KAWAI, Yoshimine KATO, and Teruaki MOTOOKA, Visible Cathode Luminescence of Oxidized Dy-Doped Si Films, Jpn. J. Appl. Phys., Vol.46, No.8A, pp. 5196-5198, 2007.08.
35. Yoshimine Kato, Hiroyuki Kamiya, Yukito Saitoh, A diamond-like carbon film as a self-alignment layer for LCDs, Diamond & Related Materials , 16, pp.296–301, 2007.01.
36. Yoshimine KATO Yoshimasa KAIDA Yuki MIYOSHI Masakazu ATSUMI and James STATHIS, a-SiGe:H and a-SiGeC:H black-matrix for Liquid Crystal Displays, Jpn. J. Appl. Phys., Vol.43 No.1 pp.30-34, 2004.01.
37. Doyle JP Chaudhari P Lacey JL Galligan EA Lien SC Callegari AC Lang ND Lu M Nakagawa Y Nakano H Okazaki N Odahara S Katoh Y Saitoh Y Sakai K Satoh H Shiota Y, Ion beam alignment for liquid crystal display fabrication, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, Vol.206 No. pp.467-471, 2003.05.
38. P. CHAUDHARI J. LACEY J. DOYLE S. LIEN A. CALLEGARI M. SAMANT J. STOHR Y. NAKAGAWA Y. KATO Y. SAITOH K. SAKAI H. SATOH S. ODAHARA, Atomic-beam alignment of inorganic materials for liquid-crystal displays, Nature, Vol.411 No. pp.56-59, 2001.05.
39. Y. KATO and Y. HAYASHI, Investigation of vertical crosstalk for a TFT-LCD with an inorganic black matrix on the array, J. Soc. Info. Display, Vol.5 No.6 pp.387-392, 1997.05.
40. Y. KATO Y. MIYOSHI M. ATSUMI Y. KAIDA S. WRIGHT and L PALMATEER, Characteristics of a-Si Thin-film Transistors with an Inorganic Black Matrix on the Top, IEICE Transaction on Electronics, Vol.E79-C No.8 pp.1091-1096, 1996.08.
41. Y. KATO S. FUKATSU and Y. SHIRAKI, Postgrowth of a Si contact layer on an air-exposed Si1-xGex/Si single quantum well grown by gas-source molecular beam epitaxy for use in an electroluminescent device, J. Vac. Sci. Tech., Vol.B13 No.1 pp.111-117, 1995.05.
42. Y. KATO S.FUKATSU N. USAMI and Y. SHIRAKI, A Si1-xGex/Si single quantum well p-i-n structure grown by solid-source and gas-source "hybrid" molecular beam epitaxy, J. Crystal Growth, Vol.136 No. pp.355-360, 1994.12.
43. S. FUKATSU N. USAMI Y. KATO H. SUNAMURA Y. SHIRAKI H. OKU T. OHNISHI Y. OHMORI and K. OKUMURA, Gas-source molecular beam epitaxy and luminescence characterization of strained Si1-xGex/Si quantum wells, J. Crystal Growth, Vol.136 No. pp.315-321, 1994.12.
44. Y. KATO Y. TAKAHASHI S. FUKATSU Y. SHIRAKI and R. ITO, Observation of the Stark effect in GaAs/AlGaAs coupled quantum wells by electroluminescence and circularly polarized photoluminescence excitation, Materials Research Society Symposium Proceedings, Vol.326 No. pp.501-506, 1994.11.
45. Y. TAKAHASHI Y. KATO S. KANO S. FUKATSU Y. SHIRAKI and R. ITO, The effect of electric field on the excitonic states in coupled quantum well structures, J. Appl. Phys., Vol.76 No.4 pp.2299-2305, 1994.08.
46. Y. KATO Y. TAKAHASHI S. FUKATSU Y. SHIRAKI and R. ITO, Observation of the Stark effect in coupled quantum wells by electroluminescence and circularly polarized photoluminescence excitation spectroscopy, J. Appl. Phys., Vol.75 No. pp.7476-7481, 1994.06.
47. Y. KATO Y. TAKAHASHI S. FUKATSU Y. SHIRAKI and R. ITO, Quantum-confined Stark shift observed by electro-luminescence and circularpolarized luminescence excitation spectroscopy in GaAs/AlxGa1-xAs coupled quantum wells, J. Vac. Sci. Tech., Vol.B12 No.2 pp.1053-1055, 1994.04.
48. Y. KATO S. FUKATSU and Y. SHIRAKI, Solid- and Gas-Source "Hybrid" Si molecular beam epitaxy growth for a Si1-xGex/Si quantum well electroluminescent device', J. Electronic Materials, Vol.23 No.1 pp.47-51, 1994.01.
49. Y. KATO S.FUKATSU N. USAMI and Y. SHIRAKI, Hybrid Si molecular beam epitaxial regrowth for a strained Si1-xGex/Si single-quantum-well electroluminescent device, Appl. Phys. Lett., Vol.63(17), pp.2414-2416, 1993.01.
主要総説, 論評, 解説, 書評, 報告書等
1. 加藤喜峰、井上 雅弘, 超音波を利用した水素センシング: ガス濃度の絶対測定および非接触計測, 水素エネルギーシステム Vol.43, No. 3, 2018.09.
2. 加藤喜峰、藤田秀朗 , 超音波を利用した水素センサー = 燃料電池車載用に小型化、低価格、高速化を目指して =, 超音波テクノ Vol.22, 2010.01.
3. 加藤 喜峰, 安達 千波矢, 遠藤 礼隆, 小笠原 舞, 熱活性による蛍光・りん光新材料の項間交差制御, ANNUAL REPORT OF THE MURATA SCIENCE FOUNDATION (村田学術振興財団), 2009.12.
4. 加藤 喜峰, 超音波を利用した水素センサーの研究, 平成20年度年報 カシオ化学振興財団, 2008.08.
5. 加藤 喜峰, 光触媒タイルの汚染物質除去効果試験結果報告, 2007.12.
6. 加藤 喜峰, 超音波の共振効果を利用したナノ導波管水素センサ, 平成18年度シーズ発掘試験研究報告書, 2007.03.
主要学会発表等
1. Takuya Kido, Mahjabin Taskin, Ting Pan, Yusei Yamamoto, Toshimitsu Tanaka, Masahiro Inoue and Yoshimine Kato , Observation of H2 Gas Replacement in a Pipeline Using Ultrasonic, International Conference on Sustainable Energy and Green Technology, SEGT 2019, 2019.12.
2. 平松 智寛, 葛 晰遥, 藤田 秀朗, 古君 修, 加藤 喜峰, 超音波による水素とヘリウムの比熱比測定, 電子情報通信学会 超音波研究会, 2014.02.
3. 葛 晰遥, 平松 智寛, 加藤 喜峰, HYDROGEN GAS CONCENTRATION MEASUREMENT FROM EXTERIOR OF A PIPELINE BY USING ULTRASONIC
, International Conference on Hydrogen Production - 2014, 2014.02.
4. N. Shimoda, R. Amano, Yoshimine Kato, KUNGEN TEII, The Ohmic Electrode of the Thin Nanocrystalline Diamond Film at High Temperatures, Diamond and Carbon Materials 2013, 2013.09.
5. Hiroaki Fukuoka, Masahiro Inoue, Yoshimine Kato, and Hideaki Fujita, Gas Concentration Measurment using Ultrasonic, The 1st IEEE Global Conference on Consumer Electronics 2012, 2012.10.
6. Y. Kato, M. Goto, R. Amano, N. Shimoda, and K. Teii, Electrical Characteristics of 4H-SiC/Nanocrystalline Diamond pn Junctions, Diamond and Carbon Materials 2012, 2012.09.
7. Hiroaki Fukuoka, Jinhyuck Jung, Hideaki FUJITA, Yoshimine KATO, and Masahiro INOUE, Standard Measurement of Hydrogen Concentration using Ultrasonic, 9th World Hydrogen Energy Conference 2012(WHEC2012), 2012.06.
8. Masaki Goto, Ryo Amano, Yoshimine Kato, Kungen Teii, Fabrication and characterization of Si/ and SiC/nanocrystalline diamond pn junctions, International Conference on Silicon Carbide and Related Materials 2011 (ICSCRM 2011), 2011.09.
9. Jinhyuck Jung, Masashi SONOYAMA, Hideaki FUJITA, and Yoshimine KATO, The novel hydrogen sensor using ultrasonic, International Congress on Hydrogen Production (ICH2P-11), 2011.06.
10. Masashi SONOYAMA, Hideaki FUJITA, and Yoshimine KATO, Application of Ultrasonic to a Hydrogen Sensor, IEEE SENSORS 2010 Conference, 2010.11.
11. Yoshimine KATO, Akira KOGA, Masaki GOTO, Kazuhiro YAMADA, Kungen TEII, Growth of 3C-SiC/nanocrystalline diamond films on Si (001) by microwave plasma-assisted carbonization and deposition, 8th European Conference on Silicon Carbide and Related Materials (ECSCRM 8th), 2010.08.
12. 加藤 喜峰, 超音波を用いた水素センサー, 福岡水素エネルギー戦略会議 平成22年度 第2回 研究分科会, 2010.08.
13. Yoshimine Kato, Masashi Sonoyama, Hideaki Fujita , An Ultrasonic Hydrogen Sensor, 2010 The Korean Ceramic Society Symposium, 2010.04.
14. 園山 将士、藤田 秀朗、加藤 喜峰, 超音波を用いた水素センサーの温度特性, The 30th Symposium on UltraSonic Electronics (USE2009), 2009.11.
15. Yoshimine Kato, Tomohiko Horikawa, Tomohiro Ikeda, and Kungen Teii, SiC and nanocrystalline diamond coating on Si substrates fabricated by microwave plasma CVD, 16th International Conference on Surface Modification of Materials by Ion Beams -SMMIB2009-, 2009.10.
16. Yoshimine Kato, Masahiro Inoue, Hideaki Fujita, Hiroshi Baba, Katsumi Ohira, A Hydrogen Sensor using Ultrasonic, 自動車技術会, 2009.05.
17. Ayataka Endo, Mai Ogasawara, Atsushi Takahashi, Yoshimine Kato and Chihaya Adachi, Photophysical and Electroluminescent Properties of SnF2-OEP having Thermally Activated Delayed Fluorescence, Materials Research Society, 2008.12.
18. 遠藤礼隆, 小笠原舞, 高橋敦史, 加藤喜峰, 安達千波矢, 熱活性化遅延蛍光を発光層に用いた新機構有機LED, 有機EL討論会, 2008.11.
19. Yoshimine Kato, 超音波を用いた水素センサーに関する研究, The 29th Symposium on UltraSonic Electronics (USE2008), 2008.11.
20. Yoshimine Kato, Nucleation of SiC on as-received and undulated Si(001) substrates, International Conference on Silicon Carbide and Related Materials 2007, 2007.10.
21. Y. KATO, H. KAMIYA, Novel Alignment layer: A Diamond-like Carbon Film without Alignment Process, 23th Int. Display Research Conf., 2003.09.
22. Y. KATO, Y. NAKAGAWA, Y. SAITOH, H. SATOH, S. ODAHARA, M. HASEGAWA, P. CHAUDHARI, J. DOYLE, S. LIEN, A. CALLEGARI, J. RITSUKO, M. SAMANT, and J. STOHR, Hydrogenated amorphous carbon film used as an alignment layer for liquid crystal displays, 22th International Display Research ConferenceEuro Display '02, 2002.10.
23. Y. KATO, Y. KAIDA, Y. MIYOSHI, and M. ATSUMI, A-SiGe:H and a-SiGeC:H Used as Black-Matrix on Arrays for TFT-LCD's, 39th Electronic Materials Conference, 1997.06.
特許出願・取得
特許出願件数  6件
特許登録件数  5件
学会活動
所属学会名
電気学会
日本機械学会
一般社団法人水素エネルギー協会
自動車技術会
日本希土類学会
IEEE
Materials Research Society
応用物理学会
学協会役員等への就任
2021.04~2022.03, 電気学会, 運営委員.
2019.04~2024.03, 日本機械学会, 運営委員.
学会大会・会議・シンポジウム等における役割
2022.05.18~2022.05.20, 電気学会 放電・プラズマ・パルスパワー技術委員会, 研究会審査委員.
2022.09.11~2022.09.14, 日本機械学会, セッションオーガナイザー.
2020.09.13~2020.09.16, 日本機械学会, セッションオーガナイザー.
2019.09.08~2019.09.11, 日本機械学会, セッションオーガナイザー.
2006.11.01~2006.11.01, The 2nd International Symposium on Functional Innovation of Molecular Informatics, Banquet and attraction.
2005.08.01~2005.08.01, 第4回「21stCOE 産学連携教育シンポジウム」講演会, 開催企画.
2005.06.01~2005.06.01, 金属学会九州支部・鉄鋼協会九州支部合同学術講演会, 座長、会場係.
2004.10.01~2004.10.01, The 1st International Symposium on Functional Innovation of Molecular Informatics, Poster and announcement.
2004.08.01~2004.08.01, 第3回「21stCOE 産学連携教育シンポジウム」講演会, 開催企画.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2011年度    
2010年度    
2009年度    
2008年度    
2006年度    
2005年度      
2004年度      
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2012年度~2015年度, 挑戦的萌芽研究, 代表, ナノ結晶Si塗布型新太陽電池の研究.
2016年度~2018年度, 挑戦的萌芽研究, 代表, 革新的i塗布型新太陽電池の研究.
2009年度~2011年度, 基盤研究(C), 代表, SiCバッファー層を用いたSi基板上へのダイヤモンド薄膜の成長.
競争的資金(受託研究を含む)の採択状況
2010年度~2012年度, 福岡水素エネルギー戦略会議, 代表, 携帯用高速水素濃度検出器の研究開発.
2009年度~2009年度, 福岡水素エネルギー戦略会議, 代表, 水素社会に向けての水素濃度高速検知警報器の研究開発.
2007年度~2008年度, 村田学術振興財団, 代表, 磁性量子構造によるスピン注入を用いた蛍光・りん光新材料の項間交差制御.
2006年度~2009年度, カシオ科学振興財団, 代表, 超音波を利用したナノ水素センサの研究.
2006年度~2006年度, シーズ発掘試験研, 代表, 超音波の共振効果を利用したナノ導波管水素センサ.
2005年度~2006年度, 日本証券奨学財団, 代表, CVD法によるSi基板上SiC結晶の核成長と欠陥成長のメカニズムの究明.
共同研究、受託研究(競争的資金を除く)の受入状況
2013.07~2014.03, 分担, 高速・簡易設置型無線式水素濃度監視ネットワークシステム.
2010.05~2013.03, 代表, 携帯用高速水素濃度検出器の研究開発.
2009.05~2010.03, 代表, 水素社会に向けての水素濃度高速検知警報器の研究開発.
学内資金・基金等への採択状況
2012年度~2012年度, 全学教育経費に係る全学教育改善・実施経費, 代表, 物づくりに関心を湧かせる教育.
2011年度~2011年度, 平成23年度 工学部 教育の質向上支援プログラム(工学部EEP)
「教員の企業内産学連携と実践力養成工学教育」企業内連携
, 代表, ・超音波水素センサーの実証試験
・鋼板の表面処理実験.
2010年度~2010年度, 平成22年度 社会連携事業, 代表, 音響効果を利用した障害児への教育.
2010年度~2010年度, 九州大学教育研究プログラム・研究拠点形成プロジェクト P&P, 分担, 次世代自動車開発人材育成のための産学官連携.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」