九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
三浦 佳子(みうら よしこ) データ更新日:2020.06.30

教授 /  工学研究院 化学工学部門 工学府 化学システム工学専攻 生体界面工学 (分子・生物システム工学講座)


主な研究テーマ
多孔性高分子を用いた固定化触媒の開発
キーワード:固定化触媒、多孔質高分子、フロー合成
2020.06~2022.03.
高分子モノリスを用いた分離膜
キーワード:多孔性高分子、ポリマーモノリス
2019.04~2021.03.
糖鎖モジュール法によるオリゴ糖ミミックの開発
キーワード:糖鎖、モジュール、糖鎖高分子、SPR
2017.04~2020.03.
メタルメッシュデバイスによる生体分離材料
キーワード:メタルメッシュデバイス、生体分離
2016.04~2020.03.
高分子モノリスによる合成フロープロセスの開発
キーワード:高分子 モノリス リアクター
2016.04~2021.03.
高分子モノリスを用いた二酸化炭素分離材料
キーワード:高分子モノリス
2015.09~2020.03.
高分子モノリスを用いた生体分離材料
キーワード:モノリス 分離
2014.04~2017.03.
高分子ナノゲルを用いた触媒の開発
キーワード:高分子、ナノゲル、触媒
2012.04~2016.03.
樹状高分子界面による機能材料の創製
キーワード:界面、樹状高分子
2007.04~2016.03.
糖鎖高分子を用いた生体機能材料の開発
キーワード:糖鎖高分子、生体高分子、感染症
2008.04~2021.03.
従事しているプロジェクト研究
糖モジュール法による中分子糖鎖クラスターによる毒素タンパク質阻害剤の開発
2020.06~2023.03, 代表者:三浦佳子, 九州大学大学院工学研究院, AMED
糖クラスターによって、毒素タンパク質を中和する薬剤の開発を行う。.
プラスチック抗体技術を用いた腸管出血性大腸菌感染症の新規治療法の開発
2017.04~2019.03, 代表者:小椋義俊, 九州大学医学部, 九州大学大学院医学研究院.
粒子分画能力を持つ金属メッシュを利用した細胞分離装置の開発
2015.12~2019.03, 代表者:近藤孝志, 村田製作所, JST
精密な構造を持つ金属メッシュを利用した細胞分離材料の開発を行う。.
相転移型ナノゲルのpKa制御によるCO2分離膜・プロセスの開発
2014.10~2020.03, 代表者:星野友.
金属メッシュデバイスを用いた検出分離材料
2010.02~2015.12, 代表者:三浦佳子.
硫酸化糖を用いたナノゲルによるプラスチック抗体の開発
2012.04~2015.03, 代表者:K. J. Shea, University of California, Irvine , アメリカ合衆国.
研究業績
主要著書
1. Mizuo Maeda, Atsuhi Takahara, Hiromi Kitano, Tetsuji Yamaoka, Yoshiko Miura, Molecular Soft-Interface Science: Principles, Molecular Design, Characterization and Application, Springer, 2019.05.
2. 三浦佳子, 生命機能に迫る分子化学
生命分子を真似る、飾る、超える
, 日本化学会, pp74-78, 2018.08.
主要原著論文
1. Hikaru Matsumoto, Yu Hoshino, Tomohiro Iwai, Masaya Sawamura, Yoshiko Miura, Polystyrene‐Supported PPh3 in Monolithic Porous Material: Effect of Cross‐Linking Degree on Coordination Mode and Catalytic Activity in Pd‐Catalyzed C−C Cross‐Coupling of Aryl Chlorides, ChemCatChem, doi.org/10.1002/cctc.202000651, 2020.06, Hybridization of porous synthetic polymer and sophisticated ligands play an important role in transition‐metal catalysis for chemical transformations at laboratory and industrial levels. A monolithic porous polymer, which is a single piece with continuous macropores, is desired for high permeability, fast mass transfer properties, high stability, and easy modification. Herein, we first develop a monolithic porous polystyrene containing three‐fold cross‐linked PPh3 (M‐PS‐TPP ) for transition‐metal catalysis. The monolithic and macroporous structure of M‐PS‐TPP was fabricated via polymerization‐induced phase separation using porogenic solvent. Moreover, the M‐PS‐TPP was synthesized using different feed ratios of divinylbenzene (DVB) for site‐isolation and mono‐P‐ligating behavior of PPh3. 31P CP/MAS NMR analysis revealed that the different selectivity of M‐PS‐TPP s was obtained in formation of mono‐P‐ligation toward PdII. The macroporous properties and controlled mono‐P‐ligating behavior of M‐PS‐TPP facilitated the challenging Pd‐catalyzed Suzuki‐Miyaura cross‐coupling reaction of chloroarenes..
2. Takahiro Oh, Kazuki Jono, Yuri Kimoto, Yu Hoshino, Yoshiko Miura, Preparation of multifunctional glycopolymers using double orthogonal reactions and the effect of electrostatic groups on the glycopolymer–lectin interaction, Polymer Journal, 10.1038/s41428-019-0244-x, 51, 12, 1299-1308, 2019, 51,12,1299-1308, 2019.08, [URL], We investigated synthetic biomacromolecules to control molecular interactions. Multifunctional glycopolymers for molecular recognition were prepared via living radical polymerization and post-click chemistry with orthogonal Huisgen and thiol-epoxy reactions. The synthesis of the polymer backbone and the subsequent side-chain introduction successfully proceeded in high yield. The multifunctional glycopolymers had a tri-block structure: the first and third blocks contained mannose, and the second block contained either a positively or negatively charged group or a neutral hydrophilic group. The molecular recognition of the glycopolymers toward lectin was evaluated via fluorescence quenching measurements. Because of the electrostatic interaction, the binding constant varied in the following order: positively charged glycopolymer (PT110) > negatively charged glycopolymer (NT110). The effect of the electrostatic interactions was modest compared with the effect of the carbohydrate–lectin binding. These results suggested that the carbohydrate–lectin interaction was an important factor in the molecular recognition of glycopolymers. This study provides guidelines for the preparation of multifunctional polymers, such as biomaterials..
3. Yu Hoshino, Shohei Taniguchi, Hinata Takimoto, Sotaro Akashi, Sho Katakami, Yusuke Yonamine, Yoshiko Miura, Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide, Angewandte Chemie - International Edition, 10.1002/anie.201910558, 59, 2, 679-683, 2020, 132,2,689-693., 2020.01, [URL], Abiotic ligands that bind to specific biomolecules have attracted attention as substitutes for biomolecular ligands, such as antibodies and aptamers. Radical polymerization enables the production of robust polymeric ligands from inexpensive functional monomers. However, little has been reported about the production of monodispersed polymeric ligands. Herein, we present homogeneous ligands prepared via radical polymerization that recognize epitope sequences on a target peptide and neutralize the toxicity of the peptide. Taking advantage of controlled radical polymerization and separation, a library of multifunctional oligomers with discrete numbers of functional groups was prepared. Affinity screening revealed that the sequence specificity of the oligomer ligands strongly depended on the number of functional groups. The process reported here will become a general step for the development of abiotic ligands that recognize specific peptide sequences..
4. Yoshiko Miura, Controlled polymerization for the development of bioconjugate polymers and material, Journal of Materials Chemistry B, 10.1039/c9tb02418b, 8, 10, 2010-2019, 2020.03, [URL], Controlled polymerization through living radical polymerization is widely studied. Controlled polymerization enables synthetic polymers with precise structures, which have the potential for excellent bio-functional materials. This review summarizes the applications of controlled polymers, especially those via living radical polymerization, to biofunctional materials and conjugation with biomolecules. In the case of polymer ligands like glycopolymers, the polymers control the interactions with proteins and cells based on the precise polymer structures. Living radical polymerization enables the conjugation of polymers to proteins, antibodies, nucleic acids and cells. Those polymer conjugations are a sophisticated method to modify bio-organisms. The polymer conjugations expand the potential of biofunctional materials and are useful for understanding biology..
5. Nagao,M., Matsubara, T., Hoshino, Y., Sato, T., Miura, Y., Synthesis of Various Glycopolymers Bearing Sialyllactose and the Effectof Their Molecular Mobility on Interaction with the Influenza Virus, Biomacromolecules, doi/10.1021/acs.biomac.9b00515, 20, 7, 2763-2769, 2019, 20, 7, 2763-2769, 2019.06.
6. Masanori Nagao, Teruhiko Matsubara, Yu Hoshino, Toshinori Sato, and Yoshiko Miura, Topological Design of Star Glycopolymers for Controlling the Interaction with the Influenza Virus, Bioconjugate Chemistry, 10.1021/acs.bioconjchem.9b00134, 30, 1192-1198, Bioconjugate Chemistry 2019,30,1192-1198, 2019.04, The precise design of synthetic polymer ligands using controlled polymerization techniques provides an advantage for the field of nanoscience. We report the topological design of glyco-ligands based on synthetic polymers for targeting hemagglutinin (HA, lectin on the influenza virus). To achieve precise arrangement of the glycounits toward the sugar-binding pockets of HA, triarm star glycopolymers were synthesized. The interaction of the star glycopolymers with HA was found to depend on the length of the polymer arms and was maximized when the hydrodynamic diameter of the star glycopolymer was comparable to the distance between the sugar-binding pockets of HA. Following the formula of multivalent interaction, the number of binding sites in the interaction of the glycopolymers with HA was estimated as 1.8–2.7. Considering one HA molecule has three sugar-binding pockets, these values were reasonable. The binding mode of synthetic glycopolymer–ligands toward lectins could be tuned using controlled radical polymerization techniques..
7. Nagao Masanori, Hoshino Yu, Miura Yoshiko, Quantitative preparation of multiblock glycopolymers bearing glycounits at the terminal segments by aqueous reversible addition–fragmentation chain transfer polymerization of acrylamide monomer, Journal of Polymer Science, Part A: Polymer Chemistry, 10.1002/pola.29344, 57, 857-861, 2019,57,857-861, 2019.03.
8. Terada, Y.; Hoshino, Y.; Miura, Y., “Glycopolymers mimicking GM1 gangliosides: Cooperativity of galactose and neuraminic acid for cholera toxin recognition, Chemistry–An Asian Journal, 10.1002/asia.201900053, 14, 1021-1027, Chemistry–An Asian Journal 2019,14,1021-1027. (DOI: doi.org/10.1002/asia.201900053), 2019.03.
9. Takahiro Oh, Masanori Nagao, Yu Hoshino , and Yoshiko Miura, Self-Assembly of a Double Hydrophilic Block Glycopolymer and the Investigation of Its Mechanism, Langmuir, 10.1021/acs.langmuir.8b01527, 2018.07.
10. Hikaru Matsumoto, Takanori Akiyoshi, Yu Hoshino, and Yoshiko Miura, Size-tuned hydrogel network of palladium-confining polymer particles: a highly active and durable catalyst for Suzuki coupling reactions in water and ambient temperature, Polymer Jornal, 10.1038/ s41428-018-0102-2, 2018.07.
11. Xinnan Cui, Tatsuya Murakami, Yukihiko Tamura, Kazuhiro Aoki, Yu Hoshino, and Yoshiko Miura, Bacterial Inhibition and Osteoblast Adhesion on Ti Alloy Surfaces Modified by Poly(PEGMA-r-Phosmer) Coating, ACS Appl. Mater. Interfaces, 10.1021/acsami.8b07757, 10, 28, 23674-23681, 2018, 10 (28), 23674–23681, 2018.06, We have synthesized and immobilized PEGMA500-Phosmer to Ti6Al4V surfaces by a simple procedure to reduce bacteria-associated infection without degrading the cell response. Adhered bacteria coverage was lessened to 1% on polymer-coated surfaces when exposed to Escherichia coli, Staphylococcus epidermidis, and Streptococcus mutans. Moreover, PEGMA500-Phosmer and homoPhosmer coatings presented better responses to MC3T3-E1 preosteoblast cells when compared with the results for PEGMA2000-Phosmer-coated and raw Ti alloy surfaces. The behavior of balancing bacterial inhibition and cell attraction of the PEGMA500-Phosmer coating was explained by the grafted phosphate groups, with an appropriate PEG brush length facilitating greater levels of calcium deposition and further fibronectin adsorption when compared with that of the raw Ti alloy surface..
12. Hiroyuki Koide, Keiichi Yoshimatsu, Yu Hoshino, Shih-Hui Lee, Saki Arizumi, Yudai Narita, Yusuke Yonamine, Adam C. Weisman, Yuri Nishimura, Naogo Oku, Yoshiko Miura, Kenneth J Shea, A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165), Nature Chemistry, 10.1038/nchem.2749, 9, 715-722, 9, pages 715–722 (2017), 2017.03, [URL], Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts..
13. Masanori Nagao, Yuuki Kurebayashi, Hirokazu Seto, Tadanobu Takahashi, Takashi Suzuki, Yu Hoshino, Yoshiko Miura, Polyacrylamide backbones for polyvalent bioconjugates using “post-click” chemistry”, Polymer Chemistry, 2016.07.
14. Yoshiko Miura, Yu Hoshino, Hirokazu Seto, Glycopolymer Nanobiotechnology, Chemical Reviews, 10.1021/acs.chemrev.5b00247, 116, 1673-1692, 2016.02, Previous studies have clearly shown the importance of the multivalent effect in saccharide–protein interactions. To investigate the multivalent effect, the use of multivalent compounds or “glycoclusters” is indispensable, and many groups have reported syntheses of glycocluster compounds. Examples of glycoclusters include liposomes with glycolipids, glycocalixarenes, glycocyclodextrins, glycopeptides, and glycopolymers. Among the various synthetic glycoclusters, glycopolymers have been the subject of much attention . In this review, we define glycopolymers as polymers carrying pendant saccharides. Since glycopolymers have larger valencies than other multivalent compounds, they show the largest amplification effects in molecular recognition. Glycopolymers are able to be prepared as nanomaterials by controlled polymerization. In this section of the review, we discuss glycopolymers and their application for biotechnology..
15. Xinnan Cui, Hirokazu Seto, Tatsuya Murakami, Yu Hoshino, Yoshiko Miura, Inhibition of Bacterial Adhesion on Hydroxyapatite Model Teeth by Surface Modification with PEGMA-Phosmer Copolymers, ACS Biomater. Sci. Eng, 10.1021/acsbiomaterials.5b00349, 2, 2, 205-212, 2016.02, Modification of the interface properties on hydroxyapatite and tooth enamel surfaces was investigated to fabricate bacterial resistance in situ. A series of copolymers containing pendants of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and ethylene glycol methacrylate phosphate (Phosmer) were polymerized by conventional free radical polymerization and changing the feed ratio of monomers. The copolymers were immobilized on hydroxyapatite and tooth enamel via the affinity of phosphate groups to hydroxyapatite to form the stable and durable polymer brushes on the surfaces. The amounts of polymer immobilized depended on the phosphate group ratio in the copolymers. Surface modification altered the interfacial properties of hydroxyapatite and inhibited bacterial adhesion. Copolymers containing 40–60% PEGMA segments showed a significant inhibitory effect on bacterial adhesion of S. epidermidis both in the presence and absence of plaque model biomacromolecules..
16. LEE, H., Hoshino, Y., Wada, Y., Arata, Y., Maruyama, A., Miura Y., Minimization of Synthetic Polymer Ligands for Specific Recognition and Neutralization of a Toxic Peptide., Journal of the American Chemical Society, 137, 34, 10878-10881, 2015, 137 (34), 10878-10881, 2015.08.
17. Yue, Mencheng, Yu Hoshino, Yoshiko Miura, Design rationale of thermally responsive microgel particle films that reversibly absorb large amounts of CO2: fine tuning the pKa of ammounium ions in the particles., Chemical Science, 10.1039/C5SC01978H, 6, 11, 6112-6123, 2015, 6 (11), 6112-6123, 2015.07, Herein we revealed the design rationale of thermally responsive gel particle (GP) films that reversibly capture and release large amounts of CO2 over a narrow temperature range (30–75 °C). The pKa value of ammonium ions in the GPs at both the CO2 capture temperature (30 °C) and release temperature (75 °C) is found to be the primary factor responsible for the stoichiometry of reversible CO2 capture by the amines in the GP films. The pKa values can be tuned by the properties of GPs such as volume phase transition temperature (VPTT), size, swelling ratio, and the imprinted microenvironment surrounding the amines. The optimal GP obtained according to the design rationale showed high capture capacity (68 mL CO2 per g dry GPs, 3.0 mmol CO2 per g dry GPs), although the regeneration temperature was as low as 75 °C. We anticipate that GP films that reversibly capture other acidic and basic gases in large amounts can also be achieved by the pKa tuning procedures..
18. Seto, Hirokazu; Ogata, Yutaro; Murakami, Tatsuya; Hoshino, Yu; Miura, Yoshiko , Selective Protein Separation Using Siliceous Materials with a Trimethoxysilane-Containing Glycopolymer, ACS Applied Materials & Interfaces, 10.1021/am2014713, 4, 1, 411-417, 2012, 4(1), 411-417, 2012.01, A copolymer with α-d-mannose (Man) and trimethoxysilane (TMS) units was synthesized for immobilization on siliceous matrices such as a sensor cell and membrane. Immobilization of the trimethoxysilane-containing copolymer on the matrices was readily performed by incubation at high heat. The recognition of lectin by poly(Man-r-TMS) was evaluated by measurement with a quartz crystal microbalance (QCM) and adsorption on an affinity membrane, QCM results showed that the mannose-binding protein, concanavalin A, was specifically bound on a poly(Man-r-TMS)-immobilized cell with a higher binding constant than bovine serum albumin. The amount of concanavalin A adsorbed during permeation through a poly(Man-r-TMS)-immobilized membrane was higher than that through an unmodified membrane. Moreover, the concanavalin A adsorbed onto the poly(Man-r-TMS)-immobilized membrane was recoverable by permeation of a mannose derivative at high concentration..
19. Matsumoto, Erino; Nishizawa, Kazuki; Fukuda, Tomohiro; Takai, Madoka; Miura, Yoshiko, Separation capability of proteins using microfluidic system with dendrimer modified surface , Transactions of the Materials Research Society of Japan, 36, 4, 541-544, 2011、36(4)、541-544, 2011.11.
20. Masaya Wada, Yuta Miyazawa, Yoshiko Miura, A specific Inhibitory effect of multivalent trehalose toward amyloid beta (1-40) aggregation, Polymer Chemistry, accepted, 2011.07.
21. Erino Matsumoto, Tomohiro Fukuda, Yoshiko Miura, Bioinert surface to protein adsorption with higher generation of dendrimer SAMs, Colloids and Surfaces B:Biointerfaces, doi:10.1016/j.colsurfb.2011.01.003, 84, 1, 280-284, 2011.05.
22. Jin Ishii, Masayuki Toyoshima, Miyuki Chikae, Yuzuru Takamura, Yoshiko Miura , Preparation of Glycopolymer-modified Gold Nanoparticles and a New Approach for a Lateral Flow Assay, Bull chem Soc Jpn, doi:10.1246/bcsj.2010030, 84, 5, 466-470, selected paper, 2011.05.
23. 三浦 佳子、横山 義之、 柴田 千絵里 , エラスチンモデルペプチドを用いた温度応答性界面の創製と生体機能解析, 高分子論文集, doi:10.1295/koron.67.584, 67, 10, 584, 2010.10.
24. Yoshiko Miura, Hikaru Mizuno, Interaction Analyses of Amyloid beta Peptide (1-40) with Glycosaminoglycan Model Polymers, Bull. Chem. Soc. Jpn, 10.1246/bcsj.20100094, 83 , 9, 1004, 2010, 83(9), 1004-1009, 2010.09.
25. Tomohiro Fukuda, Erino Matsumoto, Nobuhiko Yui,and Yoshiko Miura, Peculiar Wettability Based on Orientational Change of Self-assembled Hemispherical PAMAM Dendrimer Layer, Chemistry Letters, doi:10.1246/cl.2010.923, 39, 9, 923, 2010, 39, 923-925, 2010.07.
26. T. Fukuda, E. Matsumoto, S. Onogi, Y. Miura, Aggregation of Alzheimer Amyloid β Peptide (1−42) on the Multivalent Sulfonated Sugar Interface, Bioconjugate Chemistry, 10.1021/bc100053x, 21, 6, 1079, 2010, 21, 1079-1086, 2010.06, [URL].
27. M. Toyoshima, T. Oura, T. Fukuda, E. Matsumoto, Y. Miura, , Biological specific recognition of glycopolymermodified interfaces by RAFT living radical polymerization, Polymer Journal, doi:10.1038/pj.2009.321, 42, 172, 2010, 42, 172-178, 2010.02.
28. yoshiko miura, Inhibition of protein amyloidosis by glycomaterials, Trends in Glycoscience and Glycotechnology, doi:10.4052/tigg.21.324, 21, 122, 324-334, 2009.12.
29. Tomohiro Fukuda, Shunsuke Onogi, Yoshiko Miura, Dendritic Sugar-Microarrays by Click Chemistry, Thin Solid Films, 518, 880-888, 2009.11.
30. Koji Funato, Naoto Shirahata, Yoshiko Miura, The monolayer of a-Man via Si-C bond formation and protein recognition, Thin Solid Films, 518, 699, 2009.11.
31. Yoshiko Miura, Kiyofumi Yamamoto, Kikuko Yasuda, Yoshihiro Nishida, Kazukiyo koabayashi, Inhibition of Alzheimer Amyloid Aggregation with Sulfate Glycopolymers, Advances in Science and Technology , 57, 166-169, 2009.08.
32. Masayuki Toyoshima, Yoshiko Miura, Preparation of GLycopolymer-Substituted Gold nanoparticles and Their Molecular Recognition, Journal of Polymer Science PartA: Polymer Chemistry, 47, 1412-1421, 2009.03.
33. Erino Matsumoto, Takanori Yamauchi, Tomohiro Fukuda, Yoshiko Miura, Sugar microarray by click chemistry, Sci. Technol. Adv. Mater. , 10, 034605, 2009.03.
34. Miyuki Chikae, Tomohiro Fukuda, K. Kerman, K. Idegami, Yoshiko Miura, Eiichi Tamiya, Amyloid beta-detection with saccharide immobilized gold nanoparticle on carbon electrode, Bioelectrochemistry, 74, 118-123, 2008.11.
35. Yoshiko Miura, Takahiro Yamauchi, Hajime Sato, Tomohiro Fukuda, The Self-Assembled Monolayer of Saccharide via Click Chemistry: Formation and Protein Recognition, Thin Solid Films, 516, 2443, 2008.09.
36. 三浦佳子, 糖質薄膜を用いた生体検出, 表面, 46, 9, 443, 2008.09.
37. 豊島雅幸、大矢健、三浦佳子、小林一清, 糖鎖修飾金微粒子の合成と生体機能解析, 紛体および粉末治金, 54, 843, 2008.09.
38. Yoshiko Miura, Chouga You, Reiko Ohnishi,, Inhibition of Alzheimer amyloid beta aggregation by polyvalent trehalose, Sci. Technol Adv Mat , 9, 24407, 2008.07.
39. Tomohiro Fukuda, Shunsuke Onogi, Yoshiko Miura, Preparation and Properties of Dendritic Sugar Immobilized Surface, Trans. Mat. Res. Soc. Jpn,, 33, 733, 2008.03.
40. Yoshiko Miura, Shunsuke Onogi, Kiyofumi Yamamoto, Synthesis of Glycodendrimer via Click Chemistry and Protein Affinities, Trans. Mat. Res. Soc. Jpn, 33, 729, 2008.03.
41. Yoshiko Miura, Kikuko Yasuda, Kiyofumi Yamamoto, Mihoko Koike, Yoshihiro Nishida, Kazukiyo Kobayashi, Inhibition of Alzhimer Amyloid Aggregation with Sulfated Glycopolymers , Biomacromolecules, 8, 2129, 2007.11.
42. Yoshiko Miura, Daisuke Kouketsu, kazukiyo Kobayashi, Synthesis and Properties of a Well-Defined Glycopolymer via Living radical Polymerization, Polymer Advanced Technology, 18, 647, 2007.07.
43. Hajime Sato, Yoshiko Miura, Nagahiro Saito, Kazukiyo Kobayashi, Osamu Takai, Fibroblastic Microfabrication by Molecular Recognition on Substrate, Surface Science, 601, 3871, 2007.04.
44. Hajime Sato, Yoshiko Miura, Nagahiro Saito, Kazukiyo Kobayashi, Osamu Takai, A Micropatterned Multifunctional Carbohydrate Display by an Orthogonal Self-Assembling Strategy, Biomacromolecules, 8, 753-756, 2007.01.
45. Yoshiko Miura, Akio Sakaki, Masamichi Kamihira, Shinji Iijima, Kazukiyo Kobayashi, A globotriaosylceramide (Gb3Cer) mimic peptide , Biochimica et Biophysica Acta, 1760, 883, 2006.09.
46. Hajime Sato, Yoshiko Miura, Takahiro Yamauchi, Kazukiyo , Carbohydrate Microarray by Click Chemistry, Trans. Mat. Res. Soc. Jpn, 31, 659, 2006.04.
47. Yoshiko Miura, The Development and the Character of Saccharide Biosensors, Trends in Glycoscience and Glycotechnology, , 18, 349, 2006.04.
48. Yoshiko Miura, Chieri Shibata, Kazukiyo Kobayashi, Theremoresponsive Self-Assembly of Short Elastin-Like Peptides , Trans Mat Res Soc Jpn, 31, 549, 2006.04.
49. Yoshiko Miura, Chieri Shibata, Kazukiyo Kobayashi, Theremoresponsive Self-Assembly of Short Elastin-Like Peptides , Trans Mat Res Soc Jpn, 31, 549, 2006.04.
50. Natsuko Wada, Yoshiko Miura, Kazukiyo Koabayashi, Synthesis and Biological Properties of Glycopolymer-Polylactide Conjugate, Trans. Mat. Res. Soc. Jpn, 32, 767, 2005.04.
51. Yoshiko Miura, Natsuko Wada, Yoshihiro Nishida, H. Mori, K. Kobayashi, Chemoenzymatic Synthesis of Glycoconjugate Polymers Starting from Non-reducing Disaccharides, J. Polym. Sci. part A Polym. Chem. 2004, 42, 4598, 42, 4598, 2004.04.
52. Yoshiko Miura, Yuki Sasao, Masamichi Kamihira, Akio Sakaki, Shinji Iijima, Kazukiyo kobayashi, Peptides binding to a Gb3 mimic selected from a phage library, Biochem. Biophys. Acta, 1673, 131, 2004.04.
53. Yoshiko Miura, takayasu ikeda, kazukiyo kobayashi, Chemoenzymatically Synthesized Glycoconjugate Polymers, Biomacromolecules, 10.1021/bm025714b, 4, 2, 410, 2003.02.
54. Y. Miura, T. Ikeda, N. Wada, K. kobayashi, Chemoenzymatic Synthesis of Glycoconjugate Polymers: Greening the Synthesis of biomaterials, Green Chemistry, 5, 610, 2003.04.
55. Y. Miura, T. Ikeda, N. Wada, K. Kobayashi, Chemoenzymatic synthesis of a Multivalent Aminoglycoside, Macromol. Biosci, 3, 362, 2003.04.
56. Yoshiko Miura, Yuuki Sasao, Hirofumi Dohi, Yoshihiro Nishida and Kazukiyo Kobayashi, Self-assembled monolayers of globotriaosylceramide (Gb3) mimics: surface-specific affinity with shiga toxins , doi:10.1016/S0003-2697(02)00318-4, 310, 27, 2002.04.
57. Y. Miura, S. Kimura, S. Kobayashi, Y. Imanishi, J. Umemura, Cation recognition by self-assembled monolayers of oriented helical peptides having a crown ether unit, Biopolymers, 55, 391, 2000.04.
58. Y. Miura, S. Kimura, Y. Imanishi, J. Umemura, Formation of Oriented Helical Peptide Layers on a Gold Surface due to the Self-assembling Properties of Peptides, Langmuir, 14, 6935, 1998.04.
59. Y. Miura, S. Kimura, Y. Imanishi, J. Umemura, Self-Assembly of a-helix peptide/crown ether conjugate upon complexation with ammonium-terminated alkanethiolate, 14, 2761, 1998.04.
60. 三浦佳子、木村俊作、今西幸男、梅村順三, 分子認識部位を有するへリックスペプチドの分子集合体の構築, 70, 101, 1998.04.
主要総説, 論評, 解説, 書評, 報告書等
1. Yoshiko Miura, Controlled Polymerization for the development of bioconjugate polymers and materials, Journal of Materials Chemistry B, 10.1039/C9TB02418B, 2020, 8, 2010-2019, 2020.01, Controlled polymerization through living radical polymerization is widely studied. Controlled polymerization enables synthetic polymers with precise structures, which have the potential for excellent bio-functional materials. This review summarizes the applications of controlled polymers, especially those via living radical polymerization, to biofunctional materials and conjugation with biomolecules. In the case of polymer ligands like glycopolymers, the polymers control the interactions with proteins and cells based on the precise polymer structures. Living radical polymerization enables the conjugation of polymers to proteins, antibodies, nucleic acids and cells. Those polymer conjugations are a sophisticated method to modify bio-organisms. The polymer conjugations expand the potential of biofunctional materials and are useful for understanding biology..
主要学会発表等
1. 延廣一樹、安藝翔馬、星野友、三浦佳子, 金属メッシュデバイスを応用した細胞分離の基礎検討, 化学工学会第84年会, 2019.03.
2. 松本 光、星野 友、岩井 智弘、 澤村 正也、三浦 佳子, 活性なパラジウム錯体を選択的に形成するホスフィン固定化ポリスチレンの設計, 化学工学会 第84年会, 2019.03.
3. 寺田 侑平, 星野 友,三浦 佳子, コレラ毒素認識に向けた糖鎖高分子の分子認識スクリーニング, 第67会高分子学会年次大会, 2018.05.
4. #木元 優里,@寺田 侑平,@星野 友,@三浦 佳子 , 表面プラズモン共鳴イメージング(SPRI)を用いた疎水基含有糖鎖高分子-タンパク質間相互作用のスクリーニング, 第67会高分子学会年次大会, 2018.05.
5. 長尾 匡憲,久保 あかね,藤原 由梨奈,松原 輝彦 ,星野 友,佐藤 智典,三浦 佳子, 糖鎖高分子の構造設計によるインフルエンザウイルスとの相互作用制御, 第67会高分子学会年次大会, 2018.05.
6. 三浦 佳子・ 久保田 小絵・ 田口 裕貴・ 城石 桜子・星野 友, 金属メッシュデバイスを用いた細胞の分離に関する検討, 化学工学会 第83年会, 2018.03.
7. 服部 春香,松本 光,星野 友,三浦 佳子, 触媒的フロー合成を指向した多孔質高分子モノリスの開発, 化学工学会 第83年会, 2018.03.
8. 松本 光,星野 友,三浦 佳子, パラジウムを固定化した多孔質オルガノゲルのフロー触媒合成への応用, 化学工学会 第83年会, 2018.03.
9. 森井 崇人 ・瀬戸 弘一 ・ 星野友 ・ 三浦 佳子, 水素貯蔵性パラジウム(0)担持ナノ粒子の作製, 第14回化学工学会学生発表会 宇部大会, 2012.03.
10. 高良政巳、豊嶋雅幸、星野友、三浦佳子, RAFTリビングラジカル重合を利用した糖鎖高分子複合微粒子の合成と機能解析, 第61回高分子学会, 2011.05.
11. 和田将也、宮澤雄太、三浦佳子, Abetaの凝集に対するトレハロースとトレハロースポリマーの特殊な生物学的機構, 第4回バイオ関連化学シンポジウム, 2010.09.
特許出願・取得
特許出願件数  22件
特許登録件数  1件
学会活動
所属学会名
日本学術会議
日本表面真空学会
日本糖質学会
化学工学会
日本MRS
高分子学会
日本化学会
アメリカ化学会
学協会役員等への就任
2017.04~2020.03, 日本表面真空学会九州支部, 幹事.
2017.04~2020.03, 日本化学会九州支部, 幹事.
2017.04~2021.03, 高分子学会九州支部, 幹事.
2017.05~2019.03, 化学工学会, 高等教育委員.
2015.04~2021.03, 日本化学会, 男女共同参画委員.
2016.04~2018.03, 日本化学会九州支部, 幹事.
2015.04~2021.03, 日本糖質学会, 男女共同参画委員.
2016.04~2016.05, 日本表面科学会, 幹事.
2015.04~2020.03, 日本化学会九州支部, 幹事.
2013.04~2014.03, 日本糖質学会, 評議員.
2011.04~2014.03, 日本化学会九州支部, .
2011.04~2020.03, 高分子学会九州支部, 幹事.
2010.04~2020.03, バイオ高分子研究会, 幹事.
2010.04~2020.03, 化学工学会 九州支部, 幹事.
2004.04~2012.03, 表面技術協会ナノテク部会, 幹事.
2008.04~2020.03, 生命化学研究会, 幹事.
2004.04~2011.03, FCCAグライコサイエンス若手の会, 幹事.
学会大会・会議・シンポジウム等における役割
2020.05.27~2020.05.29, 第69回高分子学会年次大会, 運営委員.
2019.11.27~2019.11.29, 日本MRS, セッションオーガナイザー.
2018.07.26~2018.07.27, 第28回バイオ高分子研究会, 座長.
2018.12.18~2018.12.20, 日本MRS年次大会, オーガナイザー.
2017.12.14~2017.12.16, 2017 九州・西部-釜山・慶南高分子(第 18 回)繊維(第 16 回)合同シンポジウム, オーガナイザー.
2018.03.13~2018.03.15, 化学工学会 第83年会, 座長.
2018.05.23~2018.05.25, 第67会高分子年次大会, 座長.
2017.09.22~2017.09.22, 第66回高分子討論会, 座長.
2017.09.21~2017.09.21, 第66回高分子討論会, 座長.
2017.03.06~2017.03.09, 化学工学会年会, 座長(Chairmanship).
2016.03.04~2016.03.04, 化学工学会学生発表会, 座長(Chairmanship).
2017.03.16~2017.03.19, 日本化学会, 司会(Moderator).
2016.12.13~2016.12.16, 11th SPSJ International Polymer Conference, 座長(Chairmanship).
2016.03.16~2016.03.19, 日本化学会, 座長(Chairmanship).
2016.11.21~2016.11.21, 日本バイオマテリアル学会シンポジウム2016, 座長(Chairmanship).
2016.09.14~2016.09.16, 第65回高分子討論会, 座長(Chairmanship).
2016.03.05~2016.03.05, 化学工学会学生発表会, 座長(Chairmanship).
2016.05.25~2016.05.27, 高分子学会, 座長(Chairmanship).
2016.09.14~2016.09.16, 高分子討論会, 座長(Chairmanship).
2015.09.15~2015.09.17, 高分子討論会, 座長(Chairmanship).
2015.05.25~2015.05.27, 高分子学会, 座長(Chairmanship).
2014.07.23~2014.07.27, Collaborative Conferece on Materials Research, 座長(Chairmanship).
2014.09.24~2014.09.26, 高分子討論会, 座長(Chairmanship).
2015.03.07~2015.03.07, 化学工学会学生発表会, 座長(Chairmanship).
2015.03.26~2015.03.29, 日本化学会年会, 座長(Chairmanship).
2013.09.11~2013.09.13, 高分子討論会.
2013.05.29~2013.05.31, 高分子学会, 座長(Chairmanship).
2013.07.31~2013.08.01, バイオ高分子シンポジウム, 座長(Chairmanship).
2013.03.17~2013.03.19, 化学工学会第78回年会, 座長(Chairmanship).
2012.06.25~2012.06.26, バイオ高分子シンポジウム, 座長(Chairmanship).
2012.09.19~2012.09.21, 第61回高分子討論会, 座長(Chairmanship).
2012.05.29~2012.05.31, 第61回高分子学会, 座長(Chairmanship).
2011.12.19~2011.12.21, 日本MRS, 座長(Chairmanship).
2011.09.20~2011.09.23, ASAM-3, 座長(Chairmanship).
2011.09.27~2011.10.28, 高分子討論会, 座長(Chairmanship).
2011.07.25~2011.07.26, バイオ高分子シンポジウム, 座長(Chairmanship).
2011.05.25~2011.05.27, 高分子学会, 座長(Chairmanship).
2011.03.23~2011.03.23, 日本バイオマテリアル学会九州ブロック, 座長(Chairmanship).
2010.09.15~2010.09.17, 高分子討論会, 座長(Chairmanship).
2010.07.28~2010.08.29, バイオ高分子シンポジウム, 座長(Chairmanship).
2016.12.13~2016.12.16, 11th SPSJ International Polymer Conference, 組織委員.
2014.12.10~2014.12.12, 日本MRS, オーガナイザー.
2014.08~2013.08, IUMRS-ICA2014, セッションオーガナイザー.
2013.09.11~2013.09.13, 高分子討論会, セッションオーガナイザー.
2012.09.17~2012.09.20, 第31回日本糖質学会, オーガナイザー.
2012.09.26~2012.09.27, IUMRS-ICEM 2012, セッションオーガナイザー.
2012.03.25~2012.03.28, 日本化学会年会, 特別企画責任者.
2010.12.10~2010.12.12, MRS-J, オーガナイザー.
2011.12.19~2011.12.20, MRS-J, オーガナイザー.
2011.09.19~2011.09.22, ASAM3, オーガナイザー.
2010.03.26~2010.03.31, 日本化学会 , 特別企画責任者.
学会誌・雑誌・著書の編集への参加状況
2018.06~2021.06, Applied Science, 国際, 編集委員.
2020.04~2021.04, Journal of Materials Chemistry B, 国際, Advisory Board.
2015.04~2020.03, Trends in Glycoscience and Glycotechnology, 国際, 編集委員.
2014.07~2017.07, 高分子, 国内, 編集委員.
2015.04~2021.03, Chemistry Letters, 国際, 編集委員.
2010.06~2021.03, Membranes, 国際, 編集委員.
2009.04~2014.03, International Journal of Carbohydrate Chemistry, , 国際, 編集委員.
2008.04~2012.03, Advanced Science Letters, , 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2019年度 56      57 
2018年度 52  52 
2017年度 42        42 
2016年度 40        40 
2015年度 40    43 
2014年度 29      30 
2013年度 18      19 
2012年度 14        14 
2011年度 22      23 
2010年度 20        20 
その他の研究活動
海外渡航状況, 海外での教育研究歴
釜山大学, SouthKorea, 2020.06~2020.06.
Royal Society of Chemistry, UnitedKingdom, 2019.07~2019.07.
Stanford University, UnitedStatesofAmerica, 2019.06~2019.06.
Montpeller University, France, 2020.01~2020.01.
Pusan National University, SouthKorea, 2017.03~2017.03.
Ewha womens university, SouthKorea, 2016.10~2016.10.
ETH, Switzerland, 2017.01~2017.01.
University of Pennsylvania, UnitedStatesofAmerica, 2016.11~2016.11.
Alberta University, Canada, 2016.11~2016.11.
UC irvine, UnitedStatesofAmerica, 2015.08~2016.08.
ACS , Japan, 2015.08~2015.08.
Kyungpook National University, Japan, 2015.11~2015.11.
Kyungpook National University, Korea, 2014.11~2014.11.
Yeungnam University, Korea, 2014.11~2014.11.
CIMTEC2014, Italy, 2014.06~2014.06.
ACS national meeting, UnitedStatesofAmerica, 2014.08~2014.08.
CC3MDR, Korea, 2014.07~2014.07.
CC3DMR , Korea, 2013.06~2013.06.
National taiwan university of science and technology, Taiwan, 2013.10~2013.10.
上海大学, China, 2013.11~2013.11.
Material Research Society, UnitedStatesofAmerica, 2012.11~2012.11.
Asian Chemical Congress, Thailand, 2011.09~2011.09.
Pacifichem, UnitedStatesofAmerica, 2010.12~2010.12.
アメリカ化学会, UnitedStatesofAmerica, 2003.08~2003.08.
アメリカ化学会, UnitedStatesofAmerica, 2004.08~2004.08.
アメリカ化学会, UnitedStatesofAmerica, 2005.08~2005.08.
アメリカ化学会, UnitedStatesofAmerica, 2006.08~2006.08.
アメリカ化学会, UnitedStatesofAmerica, 2007.08~2007.08.
アメリカ化学会, UnitedStatesofAmerica, 2008.08~2008.08.
アメリカ化学会, UnitedStatesofAmerica, 2009.08~2009.08.
JGFos, Germany, 2004.02~2004.02.
デリー大学, India, 2009.03~2009.03.
ベトナム国家大学, Vietnam, 2008.01~2008.01.
WCG, China, 2009.12~2009.12.
ペンシルバニア大学, UnitedStatesofAmerica, 2000.04~2001.03.
外国人研究者等の受入れ状況
2018.01~2020.03, 1ヶ月以上, 九州大学, China, 科学技術振興機構.
受賞
高分子学会旭化成賞, 高分子学会, 2014.09.
BCSJ賞, 日本化学会, 2010.09.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2020年度~2021年度, 新学術領域研究, 代表, 多孔質界面での流体ダイナミクスに基づくハイブリッド触媒の創製.
2020年度~2021年度, 新学術領域研究, 代表, 水溶性ブロック高分子による水圏分子集合体の創製と機能材料への展開.
2019年度~2020年度, 挑戦的研究(萌芽), 代表, 抗体ー糖鎖高分子複合体の創製による細胞免疫操作法の確立.
2019年度~2022年度, 基盤研究(B), 代表, 精密重合による糖鎖高分子医薬の開発と生体機能操作.
2018年度~2019年度, 新学術領域研究, 代表, 糖モジュール法を活用した生理活性糖ミミックの合成.
2016年度~2017年度, 新学術領域研究, 代表, ゲルのやわらかさによる反応場の構築と合成プロセス.
2016年度~2017年度, 萌芽研究, 代表, 糖鎖高分子のデノボデザインによる抗体様の高分子医薬の開発.
2015年度~2018年度, 基盤研究(B), 代表, 精密重合を基盤にした糖鎖高分子ナノメディシンの開発.
2014年度~2015年度, 挑戦的萌芽研究, 代表, ダイナミック硫酸化糖鎖高分子の創製と機能.
2012年度~2013年度, 萌芽研究, 代表, 糖鎖高分子ナノ微粒子によるバイオセンシング材料の開発 .
2011年度~2014年度, 若手研究(A), 代表, 硫酸化糖鎖高分子ライブラリーに基づく病原体防除材料の展開 .
2008年度~2012年度, 新学術領域研究, 代表, 生体機能性樹状高分子を用いたソフトインターフェースの設計.
2008年度~2009年度, 若手研究(B), 代表, 糖鎖高分子を用いた病原体防除材料の開発.
競争的資金(受託研究を含む)の採択状況
2020年度~2023年度, AMED 創薬推進事業, 代表, 糖モジュール法による中分子糖鎖クラスターによる毒素タンパク質阻害剤の開発.
2014年度~2017年度, JST-ALCA, 分担, 相転移型ナノゲルのpKa制御によるCO2分離膜・プロセスの開発.
2011年度~2011年度, JST A-STEP, 代表, 生理活性糖鎖を利用した病原体の捕捉材料の開発.
2009年度~2010年度, JST 研究シーズ探索プログラム, 自己組織性糖鎖高分子による超分子ナノワイヤーの創製.
共同研究、受託研究(競争的資金を除く)の受入状況
2019.07~2020.06, 分担, MMDを用いた環境分野応用に関する基礎研究
.
2019.07~2020.06, 分担, MMDを用いた分離工学に関する基礎研究.
2018.04~2019.03, 代表, 新規イオン交換型吸着剤の開発.
2018.04~2019.03, 代表, 高性能分離膜とそれを用いた分離検出技術に関する基礎研究.
2016.04~2017.03, 代表, 新規イオン交換型吸着剤の開発.
2017.04~2018.03, 代表, 新規イオン交換型吸着剤の開発.
2016.04~2017.03, 代表, 微小粒子状物質の分離、および、センシング技術に関する研究.
2015.04~2016.03, 代表, nmからμmサイズの物質の分離、及び、センシングに関する研究.
2015.04~2016.03, 代表, 高分子合成技術を利用した医療用機能性素材作製技術の確立.
2014.04~2015.03, 代表, 金属メッシュを用いた微量物質検出用センサーデバイスの研究開発.
2013.06~2014.04, 代表, 精密合成高分子による生体機能材料の開発.
2013.04~2014.03, 代表, 高分子を用いた新規分離材料の開発.
2013.09~2014.03, 代表, ナノ材料のバイオテクノロジーへの応用.
2012.07~2013.06, 代表, 精密合成高分子による生体機能材料の開発.
2013.04~2014.03, 代表, 金属メッシュを用いた微量物質検出用センサーデバイスの研究開発.
2012.04~2013.03, 代表, 金属メッシュを用いた微量物質検出用センサーデバイスの研究開発.
2012.04~2013.03, 代表, 抗体やタンパク質、光学活性化合物を認識する高分子の合成と評価による分離材料の開発.
2011.04~2012.06, 代表, 精密合成高分子による生体機能材料の開発.
2011.09~2012.03, 代表, 蛋白質を精製する微粒子の開発.
2011.04~2012.03, 代表, 有機高分子を用いた被測定物質吸着用被膜の開発
.
2010.09~2011.03, 代表, 生体高分子研究に関する学術調査.
2010.02~2011.03, 代表, 有機高分子を用いた被測定物質吸着用被膜の開発.
2010.02~2011.03, 代表, 糖鎖高分子を用いた病源体除去材料の開発.
寄附金の受入状況
2019年度, 公益財団法人江野科学振興財団, 多孔性高分子を用いたバイオミメティックフリーリアクター.
2018年度, 豊田理研, 分子間相互作用を利用したフィルター型分離リアクターの開発.
2015年度, 旭硝子財団, 旭硝子財団
精密高分子合成を基盤とした、病原体捕捉材料の開発と活用.
2016年度, 日産化学, 高分子モノリスに関する基礎研究.
2017年度, 豊田理研スカラー.
2017年度, 精密重合を基盤とした糖鎖高分子による抗体代替分子の開発, 東京化成化学振興財団.
2015年度, 日産化学, 高分子モノリスによる機能材料開発.
2015年度, 旭化成ケミカルズ, 精密重合をベースとした、糖鎖高分子によるナノメディシンの開発と活用.
学内資金・基金等への採択状況
2014年度~2015年度, 公益財団法人コスメトロジー研究振興財団, 代表, 構造色による色調材料.
2011年度~2011年度, 水素実証試験, 代表, 有機ナノ素材へのPd固定化基材を利用した水素吸着素材の開発.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」