九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
川越 清以(かわごえ きよとも) データ更新日:2022.06.10

教授 /  理学研究院 物理学部門 基礎粒子系物理学


主な研究テーマ
最高エネルギーの衝突型加速器を用いた素粒子実験
キーワード:コライダー
2011.04~2016.03.
従事しているプロジェクト研究
Muon g-2/EDM実験
2015.04~2024.03, 代表者:三部勉, KEK, KEK/J-PARC(日本)
J-PARCで行うミューオンg-2/EDM実験.
COMET実験
2012.04~2024.03, 代表者:久野良孝, 大阪大学, KEK/J-PARC(日本)
J-PARCで行うミューオン電子転換過程探索実験.
CALICE国際共同研究
2011.04~2024.04, 代表者:Frank Simon, MPI, ドイツ
カロリメータ測定器の開発研究.
ILD測定器コンセプトグループ
2011.04~2024.03, 代表者:Ties Behnke, DESY, ドイツ
ILC実験のための測定器コンセプト.
アトラス国際共同実験
2011.04~2021.08, 代表者:Karl Jacobs, フライブルグ大学, スイス
CERN/LHC加速器を用いた陽子陽子衝突実験.
研究業績
主要著書
1. ブライアン・R. マーティン/グレアム・ショー・著  駒宮幸男/川越清以・監訳 吉岡瑞樹/神谷好郎/織田勧/末原大幹・訳, マーティン/ショー 素粒子物理学 原著第4版, 講談社サイエンティフィック, ISBN: 978-4-06-511974-7, 2020.03, Martin and Shawの"Particle Physics, Fourth Edition"の完訳。ヒッグス粒子の発見、ニュートリノ振動の発見など、近年の飛躍的進歩に対応した最新版。CP対称性の破れ、エキゾチックハドロン、標準模型とそれを超える理論、宇宙論との関連などを網羅している。.
主要原著論文
1. Georges Aad, Kiyotomo Kawagoe et al. (The ATLAS Collaboration), Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √s=7 and 8 TeV in the ATLAS experiment, Eur. Phys. J. C, 10.1140/epjc/s10052-015-3769-y, 76, 6, 2016.01, Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H→γγ,ZZ∗,WW∗,Zγ,bb¯,ττ and μμ decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb−1 at √s=7 TeV and 20.3 fb−1 at √s=8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18+0.15−0.14. The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered..
2. Georges Aad, Kiyotomo Kawagoe et al. (ATLAS Collaboration) (CMS Collaboration), Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett., 10.1103/PhysRevLett.114.191803, 114, 191803, 2015.05, A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21(stat.)±0.11(syst.) GeV..
3. Georges Aad, Kiyotomo Kawagoe et al. (The ATLAS Collaboration), Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D, 10.1103/PhysRevD.91.012006, 91, 012006, 2015.01, The final ATLAS Run 1 measurements of Higgs boson production and couplings in the decay channel H→ZZ∗→ℓ+ℓ−ℓ′+ℓ′−, where ℓ,ℓ′=e or μ, are presented. These measurements were performed using pp collision data corresponding to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at center-of-mass energies of 7 TeV and 8 TeV, respectively, recorded with the ATLAS detector at the LHC. The H→ZZ∗→4ℓ signal is observed with a significance of 8.1 standard deviations, with an expectation of 6.2 standard deviations, at mH = 125.36 GeV, the combined ATLAS measurement of the Higgs boson mass from the H→γγ and H→ZZ∗→4ℓ channels. The production rate relative to the Standard Model expectation, the signal strength, is measured in four different production categories in the H→ZZ∗→4ℓ channel. The measured signal strength, at this mass, and with all categories combined, is 1.44 +0.40−0.33. The signal strength for Higgs boson production in gluon fusion or in association with tt¯ or bb¯ pairs is found to be 1.7 +0.5−0.4, while the signal strength for vector-boson fusion combined with WH/ZH associated production is found to be 0.3 +1.6−0.9..
4. Georges Aad, Kiyotomo Kawagoe et al. (The ATLAS Collaboration), Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at √s = 8 TeV with the ATLAS detector, Phys. Lett. B, 10.1016/j.physletb.2014.09.054, 738, 234-253, 2014.11, Measurements of fiducial and differential cross sections of Higgs boson production in the H→ZZ∗→4ℓ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb−1 of pp collision data, produced at √s=8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found..
5. Georges Aad, Kiyotomo Kawagoe et al. (The ATLAS Collaboration), Measurement of the Higgs boson mass from the H→γγ and H→ZZ∗→4ℓ channels with the ATLAS detector at the LHC, Phys. Rev. D, 10.1103/PhysRevD.90.052004, 90, 052004, 2014.09, An improved measurement of the mass of the Higgs boson is derived from a combined fit to the invariant mass spectra of the decay channels H→γγ and H→ZZ∗→4ℓ. The analysis uses the pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at center-of-mass energies of 7 TeV and 8 TeV, corresponding to an integrated luminosity of 25 fb−1. The measured value of the Higgs boson mass is mH = 125.36 ± 0.37 (stat) ± 0.18 (syst) GeV. This result is based on improved energy-scale calibrations for photons, electrons, and muons as well as other analysis improvements, and supersedes the previous result from ATLAS. Upper limits on the total width of the Higgs boson are derived from fits to the invariant mass spectra of the H→γγ and H→ZZ∗→4ℓ decay channels..
6. Georges Aad, Kiyotomo Kawagoe et al. (The ATLAS Collaboration), Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B, 10.1016/j.physletb.2013.08.010, 726, 88-119, 2013.10, Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H->gammagamma, H->ZZ*->4l and H->WW*->lnulnu. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of sqrt(s)=7 TeV and sqrt(s)=8 TeV, corresponding to an integrated luminosity of about 25 fb-1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson..
7. Georges Aad, Kiyotomo Kawagoe et al. (The ATLAS Collaboration), Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B, 10.1016/j.physletb.2013.08.026, 726, 1-3, 120-144, 2013.10, Studies of the spin and parity quantum numbers of the Higgs boson are presented, based on proton-proton collision data collected by the ATLAS experiment at the LHC. The Standard Model spin-parity JP=0+ hypothesis is compared with alternative hypotheses using the Higgs boson decays H->gammagamma, H->ZZ*->4l and H->WW*->lnulnu, as well as the combination of these channels. The analysed dataset corresponds to an integrated luminosity of 20.7 fb-1 collected at a centre-of-mass energy of sqrt(s)=8 TeV. For the H->ZZ*->4l decay mode the dataset corresponding to an integrated luminosity of 4.6 fb-1 collected at sqrt(s) is included. The data are compatible with the Standard Model JP=0+ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied in this Letter, namely some specific JP=0-,1+,1-,2+ models, are excluded at confidence levels above 97.8%. This exclusion holds independently of the assumptions on the coupling strengths to the Standard Model particles and in the case of the JP=2+ model, of the relative fractions of gluon-fusion and quark-antiquark production of the spin-2 particle. The data thus provide evidence for the spin-0 nature of the Higgs boson, with positive parity being strongly preferred..
8. Georges Aad, Kiyotomo Kawagoe et al. (The ATLAS Collaboration), A Massive Particle Consistent with the Standard Model Higgs Boson observed with the ATLAS Detector at the Large Hadron Collider, Science, 10.1126/science.1232005, 338, 6114, 1576-1582, 2012.12, Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga–electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself..
9. Georges Aad, Kiyotomo Kawagoe et al. (The ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, 10.1016/j.physletb.2012.08.020, 716, 1-29, 2012.09, A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb^-1 collected at sqrt(s) = 7 TeV in 2011 and 5.8 fb^-1 at sqrt(s) = 8 TeV in 2012. Individual searches in the channels H->ZZ^(*)->llll, H->gamma gamma and H->WW->e nu mu nu in the 8 TeV data are combined with previously published results of searches for H->ZZ^(*), WW^(*), bbbar and tau^+tau^- in the 7 TeV data and results from improved analyses of the H->ZZ^(*)->llll and H->gamma gamma channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 +/- 0.4(stat) +/- 0.4(sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7x10^-9, is compatible with the production and decay of the Standard Model Higgs boson..
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
1. KIYOTOMO KAWAGOE, Physics and Detectors at the International Linear Collider, XVI Workshop on High Energy Physics Phenomenology (WHEPP 2019), 2019.12.
2. 川越 清以, まとめと今後の展望, 日本物理学会年次大会シンポジウム「ILCの多角的活用」, 2019.03.
3. 川越 清以, ILC計画の現状と今後, 日本物理学会秋季大会シンポジウム「いよいよ実現へ向け動き出すILC計画
 ーグリーンライトに備えてー」, 2018.09, 次世代加速器として計画が進められている国際リニアコライダー計画の現状と今後について報告した。.
4. KIYOTOMO KAWAGOE, Detector Developments, 2017 ICFA Seminar, 2017.11.
5. 川越 清以, ILC測定器概要, 日本応用物理学会秋季講演会シンポジウム「国際リニアコライダー計画とその技術」, 2017.09.
6. KIYOTOMO KAWAGOE, Physics and Detectors at Future Linear Colliders, XXII DAE-BRNS HIGH ENERGY PHYSICS SYMPOSIUM 2016, 2016.12.
7. KIYOTOMO KAWAGOE, ILD, ECFA LC 2016, 2016.06, ILC計画におけるILD測定器コンセプトグループの現状について報告した。.
8. 川越 清以, ILC計画, 素粒子物理・原子核物理分野の「大型施設計画・大規模研究計画マスタープラン」に関するシンポジウム, 2016.02, ILC計画の現状について報告した。.
9. 川越 清以, ILC計画の現状, 日本物理学会秋季大会, 2015.09, ILC計画の現状について報告した。.
10. KIYOTOMO KAWAGOE, Linear Collider Detectors, IEEE 2013 Nuclear Science Symposium, 2013.10, [URL], 次世代加速器計画・国際リニアコライダーにおける物理と測定器に関する講演を行った。.
11. 川越 清以, ILCの物理と測定器詳細設計書, 日本物理学会年次大会, 2013.03, ILC計画で期待される物理について、ヒッグス粒子の精密測定を中心に話した。また、測定器の開発・設計の状況についても話した。.
12. 川越 清以, ILC計画の物理, 素粒子物理・原子核物理分野の「大型施設計画・大規模研究計画マスタープラン」に関するシンポジウム, 2013.02, ILC計画で期待される物理について、ヒッグス粒子の精密測定を中心に話した。.
13. Kiyotomo Kawagoe, Physics at the ILC, The 3rd LCFORUM meeting, 2012.02, [URL], LHCでのヒッグス粒子発見の期待が高まる中、次世代加速器である国際リニアコライダーでのヒッグス粒子研究を中心とする物理研究の提案を行った。.
14. 川越清以, ILCの物理・測定器, 高エネルギー物理学将来計画検討小委員会タウンミーティング『コライダー加速器による高エネルギー物理学の将来展望』, 2011.09, [URL], LHCでのヒッグス粒子発見の期待が高まる中、次世代加速器国際リニアコライダーで期待される物理と測定器開発について講演した。.
学会活動
所属学会名
日本加速器学会
高エネルギー物理学研究者会議
日本物理学会
学協会役員等への就任
2020.10~2022.04, 高エネルギー物理学研究者会議, ILC推進パネル幹事.
2021.04~2024.03, 高エネルギー加速器研究機構, 素粒子原子核研究所運営会議委員.
2021.04~2024.03, 高エネルギー加速器研究機構, 加速器・共通基盤研究施設運営会議委員.
2018.04~2021.03, 高エネルギー加速器研究機構, 素粒子原子核研究所運営会議委員.
2018.04~2021.03, 高エネルギー加速器研究機構, 加速器・共通基盤研究施設運営会議委員.
2019.09~2021.09, 高エネルギー物理学研究者会議, 高エネルギー委員会委員.
2015.11~2018.12, ILD concept group, Deputy Spokesperson.
2014.04~2015.03, 高エネルギー加速器研究機構, 加速器・共通基盤研究施設運営会議委員.
2015.04~2018.03, 高エネルギー加速器研究機構, 加速器・共通基盤研究施設運営会議委員.
2015.04~2018.03, 高エネルギー加速器研究機構, 素粒子原子核研究所運営会議委員.
2014.04~2015.03, 高エネルギー加速器研究機構, 素粒子原子核研究所運営会議委員.
2015.04~2016.03, 高エネルギー加速器研究機構, 大型シミュレーション研究推進委員会委員.
2014.04~2015.03, 日本物理学会, 九州支部監事.
2015.04~2017.03, 日本物理学会, 代議員.
2013.03~2015.03, 日本物理学会, 代議員.
2015.04~2018.03, 高エネルギー加速器研究機構, リニアコライダー計画推進委員会委員.
2012.04~2015.03, 高エネルギー加速器研究機構, リニアコライダー計画推進委員会委員.
2013.01~2014.03, 高エネルギー物理学研究者会議, ILC立地評価会議共同議長.
2012.06~2014.03, 高エネルギー物理学研究者会議, ILC戦略会議委員.
2012.04~2014.03, 高エネルギー加速器研究機構, 大型シミュレーション研究推進委員会委員.
2013.09~2015.09, 高エネルギー物理学研究者会議, 高エネルギー委員会委員.
2012.04~2016.03, 高エネルギー加速器研究機構, 日米事業研究計画委員会.
2010.04~2012.03, 高エネルギー加速器研究機構, 大型シミュレーション研究推進委員会委員.
2010.04~2012.03, 高エネルギー加速器研究機構, リニアコライダー計画推進委員会委員.
2011.09~2013.09, 高エネルギー物理学研究者会議, 高エネルギー委員会委員.
学会大会・会議・シンポジウム等における役割
2019.10.28~2019.11.01, LCWS2019, 国際組織委員会委員.
2018.10.22~2018.10.26, LCWS2018, 国際組織委員会委員、座長.
2019.03.14~2019.03.17, 日本物理学会, 現地組織委員会委員、座長.
2019.11.25~2019.11.29, Calorimetry for the High Energy Frontier 2019 (CHEF2019), 現地組織委員会委員長、プログラム委員会委員、座長.
2018.06.28~2018.06.01, Asian Linear Collider Workshop 2018 (ALCW2018), 国際組織委員会委員長、現地組織委員会委員、座長.
2017.10.02~2017.10.06, Calorimetry for the High Energy Frontier 2017 (CHEF2017), 国際組織委員会委員、座長.
2016.03.19~2016.03.22, 日本物理学会, 座長(Chairmanship).
2016.06.03~2016.06.05, ILD meeting, 座長(Chairmanship).
2016.03.07~2015.03.09, CALICE meeting, 実行委員長.
2015.04.19~2015.04.21, CALICE meeting, 実行委員長.
2014.09.15~2014.09.17, CALICE meeting, 座長(Chairmanship).
2014.09.18~2014.09.21, 日本物理学会, 座長(Chairmanship).
2013.03.26~2013.03.29, 日本物理学会, 座長(Chairmanship).
2012.03.05~2012.03.07, CALICE meeting, 座長(Chairmanship).
2012.03.24~2012.03.27, 日本物理学会, 座長(Chairmanship).
2011.09.16~2011.09.19, 日本物理学会, 座長(Chairmanship).
2016.03.07~2016.03.09, CALICE Collaboration Meeting 2016, Local Organizing Committee Chair.
2014.11.04~2014.11.17, The 2nd Asia-Europe-pacific School of High-energy Physics, IOC member.
2012.10.14~2012.10.26, The First Asia-Europe-pacific School of High-energy Physics, Local Organizing Committee Chair.
2012.05.23~2012.05.25, ILD Workshop 2012, Local Organizing Committee Chair.
学会誌・雑誌・著書の編集への参加状況
2010.08~2018.04, Journal of High Energy Physics (JHEP), 国際, 査読委員.
2012.08~2016.03, Progress of Theoretical and Experimental Physics (PTEP), 国際, 編集委員.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2017年度      
2018年度      
その他の研究活動
海外渡航状況, 海外での教育研究歴
ローザンヌ工科大学, Switzerland, 2019.04~2019.04.
ハワイ大学, UnitedStatesofAmerica, 2019.04~2019.04.
トロント大学, Canada, 2019.08~2019.08.
IIT Guwahati, India, 2019.12~2019.12.
テキサス大学アーリントン校, UnitedStatesofAmerica, 2018.10~2018.10.
ICISE, Vietnam, 2018.09~2018.09.
LLR, France, 2017.03~2017.03.
リヨン大学, France, 2017.04~2017.04.
SLAC, UnitedStatesofAmerica, 2017.06~2017.06.
リヨン大学, France, 2017.10~2017.10.
オタワ, Canada, 2017.11~2017.11.
Santander, Spain, 2016.05~2015.06.
KAIST, Korea, 2016.09~2016.09.
University of Texas Arlington, UnitedStatesofAmerica, 2016.09~2016.09.
IHEP, China, 2016.10~2016.10.
デリー大学, India, 2016.12~2016.12.
ワシントンDC, UnitedStatesofAmerica, 2015.04~2015.05.
PSI, Switzerland, Slovenia, 2015.08~2016.08.
Whistler, Canada, 2015.10~2015.11.
Puri, India, 2014.11~2014.11.
IHEP, China, 2014.10~2014.10.
CIEMAT, Spain, 2014.09~2014.09.
COEX, Korea, 2013.10~2013.11.
CERN, Switzerland, 2013.07~2013.07.
ワシントンDC, UnitedStatesofAmerica, 2013.04~2013.05.
DESY, Germany, 2013.03~2013.03.
CERN, Switzerland, 2013.02~2013.02.
ケンブリッジ大学, UnitedKingdom, 2012.09~2012.09.
Hotel Inter-Burgo EXCO, Daegu, Korea, 2012.03~2012.04.
Ecole Polytechnique, France, 2012.02~2012.02.
Kyungpook National University, Korea, 2011.11~2011.11.
CERN, Switzerland, 2011.11~2011.11.
the Universidad de Granada, CERN, Spain, Switzerland, 2011.09~2011.10.
CERN, Switzerland, 2011.06~2011.06.
CERN, LAL/Orsay, Switzerland, France, 2011.05~2011.05.
受賞
High Energy and Particle Physics Prize, European Physical Society, 2013.07.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2015年度~2018年度, 基盤研究(A), 代表, 荷電レプトンフレーバー非保存探索実験の革新的検出器開発による新展開.
2011年度~2015年度, 新学術領域研究, 分担, LHCでの発見が導く次世代エネルギーフロンティアの発展.
2011年度~2015年度, 特別推進研究, 分担, ILCのための最先端測定器の国際的新展開.
日本学術振興会への採択状況(科学研究費補助金以外)
2011年度~2012年度, 頭脳循環を加速する若手研究者海外派遣プログラム, 分担, 時空構造解明を目指すアトラス実験での若手研究者育成とネットワーク構築.
2011年度~2012年度, 二国間交流, 代表, リニアコライダー実験のための電磁カロリメータの研究.
競争的資金(受託研究を含む)の採択状況
2016年度~2018年度, 高エネルギー加速器研究機構・大学等連携支援事業, 代表, 九州大学―高エネルギー加速器研究機構の連携による加速器科学推進のための若手研究者育成.
2013年度~2015年度, 高エネルギー加速器研究機構・大学等連携支援事業, 代表, 九州大学—KEKの連携による加速器科学の推進・研究拠点形成と若手研究者育成.
2011年度~2012年度, 高エネルギー加速器研究機構・大学等連携支援事業, 代表, 九州大学における次世代加速器実験を目指した研究拠点形成と学部レベルからの研究者育成.
共同研究、受託研究(競争的資金を除く)の受入状況
2022.04~2023.03, 代表, 素粒子・原子核・宇宙線・宇宙物理に関連する実験分野に関する学術研究動向-将来素粒子実験計画の国際的新展開-.
2021.04~2022.03, 代表, 素粒子・原子核・宇宙線・宇宙物理に関連する実験分野に関する学術研究動向-将来素粒子実験計画の国際的新展開-.
2020.04~2021.03, 代表, 素粒子・原子核・宇宙線・宇宙物理に関連する実験分野に関する学術研究動向-将来素粒子実験計画の国際的新展開-.
2019.04~2020.03, 代表, 素粒子・原子核・宇宙線・宇宙物理に関連する実験分野に関する学術研究動向-将来素粒子実験計画の国際的新展開-.
2012.06~2015.03, 代表, 電磁カロリメータのためのシリコンセンサーの開発.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」