九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動
工藤 健太郎(くどう けんたろう) データ更新日:2021.06.16

助教 /  工学研究院 機械工学部門 加工プロセス講座


主な研究テーマ
金属粉末射出成形製Ni基超合金に関する研究
キーワード:金属粉末射出成形法, Ni基超合金
2017.04~2019.06.
金属粉末射出成形製Ti合金の疲労強度向上
キーワード:金属粉末射出成形法, 疲労, Ti合金
2015.04~2019.06.
研究業績
主要原著論文
1. K. KUDO, K. SHINAGAWA , H. MIURA, The Effects of Grain Size and Pore Size on the High Cycle Fatigue Behavior of Injection Molded Ti-6Al-4V Compacts, Advances in Powder Metallurgy & Particle Materials-2018,Proceedings of the 2018 International Conference on Powder Metallurgy & Particulate Materials, POWDERMET2018, 243-252, 2018.06.
2. Kentaro KUDO, Kazunari SHINAGAWA, Hideshi MIURA,, Effect of α + β region sintering on the mechanical properties of injection molded Ti-6Al-4V compacts, Mechanical Engineering Journal, 5, 4, No.17-00686, 2018.04.
3. Kentaro Kudo, Kazunari Shinagawa, Hideshi Miura, Evaluation of influence factors on the microstructure, static and dynamic mechanical properties of injection molded Ti-6Al-4V based compacts by multiple addition of Mo and B Elements, Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 10.2497/jjspm.65.145, 65, 3, 145-153, 2018.01, [URL], Although the injection molded Ti alloys show sufficient tensile strength, their fatigue strength was significantly lower than that of wrought material. In this study, the effect of both additions of molybdenum and boron in the Ti-6Al-4V compacts on the microstructural refinement and strength was evaluated. The 4Mo-0.4B added compacts showed fine microstructure and resulted in high tensile strength. However, their fatigue strength was not improved. The degree of influence of oxygen content, relative density and grain size on the tensile strength was estimated, and the main factor of improving tensile strength was the grain refinement. Also, the cause that fatigue strength was not improved was the ratio of the maximum pore diameter to the grain diameter increased due to the microstructural refinement, so that the crack initiated from large pore..
4. K. KUDO, H. ISHIMITSU, J. CHOE, T. OSADA, H. MIURA, K. SHINAGAWA, Effect of Grain Size on the Fatigue Properties of Injection Molded Ti-6Al-4V Compacts, Proceedings of the 2016 Powder Metallurgy World Congress & Exhibition, 3291789, 1-6, 2016.10.
5. Kentaro Kudo, Sek Kin Wai, Toshiko Osada, Fujio Tsumori, Hideshi Miura, Improvement of mechanical properties of injection molded ni-base superalloy compacts, Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 10.2497/jjspm.63.462, 63, 7, 462-467, 2016.01, [URL], Superalloy has been used for aerospace application because of their excellent attributes of high strength and corrosion resistance at high temperature. Inconel 718 is one of the representative Ni-based superalloy. Generally, superalloy has poor workability, especially high tool wear by machining, so that it is not easy to produce the components of complex shaped parts at low cost. To overcome such as the problem, metal injection molding (MIM) process would be a useful technique which offers net shape production, high design flexibility, and high cost efficiency for mass production. In this study, gas-atomized fine alloy powder of Inconel 718 was prepared for MIM process, and the mechanical properties of injection molded compacts were investigated. The relative density over 99.7 %, which is much higher than density of usual MIM compacts, was obtained by supersolidious liquid-phase sintering. Furthermore, injection molded Inconel 718 showed high fatigue strength comparable to the wrought materials, because the pore size of the MIM compacts was smaller than the inclusion size of wrought materials. And it was found that the grain size was more dominant than pore size against the fatigue failure of MIM Inconel 718 with near full density..
6. 工藤 健太郎,徳岡 輝和,姜 賢求,長田 稔子,津守 不二夫,三浦 秀士, 高Ni焼結合金鋼におけるメゾへテロ組織及び転造の面圧疲労強度に及ぼす影響, 粉体および粉末冶金, 59, 5, 258-263, 2012.05.
7. 徳岡 輝和,山本 龍,工藤 健太郎,津守 不二夫,三浦 秀士, 焼結Ni合金鋼歯車におけるメゾへテロ組織及び転造の歯元曲げ疲労特性に及ぼす影響, 粉体および粉末冶金, 58, 6, 350-354, 2011.01.
主要総説, 論評, 解説, 書評, 報告書等
主要学会発表等
学会活動
所属学会名
日本鉄鋼協会
日本塑性加工学会
粉体粉末冶金協会
日本機械学会
学協会役員等への就任
2021.06~2023.06, 日本塑性加工学会 九州支部 若手の会.
2020.06~2022.06, 粉体粉末冶金協会 , 参事.
2020.04~2022.03, 日本塑性加工学会 編集委員会, 運営委員.
2018.10~2019.06, 日本塑性加工学会 九州支部 若手の会, メンバー.
学会大会・会議・シンポジウム等における役割
2020.10.27~2020.01.29, 粉体粉末冶金協会 2020年度秋季大会, 運営委員.
2018.03.16~2018.03.16, 日本機械学会九州支部 第71期総会・講演会, 座長.
学会誌・雑誌・著書の編集への参加状況
2020.04~2022.03, 日本塑性加工学会会報誌 ぷらすとす, 国内, 編集委員.
受賞
優秀講演発表賞, 粉体粉末冶金協会, 2011.11.
第43回 研究進歩賞, 粉体粉末冶金協会, 2019.06.
研究資金
学内資金・基金等への採択状況
2016年度~2016年度, 平成28年度研究活動基礎支援制度, 代表, 国際学会派遣支援.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。
 
 
九州大学知的財産本部「九州大学Seeds集」