九州大学 研究者情報
研究者情報 (研究者の方へ)入力に際してお困りですか?
基本情報 研究活動 教育活動 社会活動
CHAKRABORTY TAPAS(ちやくらぼーてい たぱす) データ更新日:2023.06.28



主な研究テーマ
生殖
キーワード:幹細胞, 水産養殖, ICT
2020.04~2025.03.
従事しているプロジェクト研究
「餌止め」はなぜ赤潮による魚類斃死を抑制するのか?
2022.07~2023.04, 代表者: 島崎 洋平, Kyushu University, 一般社団法人 ヤンマー資源循環支援機構 (Japan).
魚類の幹細胞培養系とin vitro ゲノム編集による生殖幹細胞の未分化維持機構
2022.04~2025.03, 代表者:Tapas Chakraborty, Kyushu University, JSPS (Japan).
空間情報と1細胞解析の統合による魚類生殖腺の性的可塑性を制御する分子機構の解明
2022.04~2026.03, 代表者:Kohei Ohta, Kyushu University, JSPS (Japan).
Somatic cell epigenetics and gonadal sexual plasticity in fish
2016.04~2018.03, 代表者:Kohei Ohta, Kyushu university, JSPS (Japan)
Sexual plasticity in fish.
Development of new breeding technologies for faster production of improved varieties from natural Yellow tail
2016.10~2019.03, 代表者:Yukunori Kazeto, Fisheries research agency, Ministry of Agriculture, Forestry and Fisheries (Japan)
Advance breeding of Yellowtail.
Elucidation of molecular mechanism of sexual plasticity in fish gonad by cell analysis system and sex transformation
2019.04~2022.03, 代表者:Kohei Ohta, Kyushu university, JSPS (Japan)
sexual plasticity in fish.
Elucidation of the molecular mechanism of autophagy on fertilization of fish
2018.10~2021.03, 代表者:Sipra Mohapatra, Kyushu university, Sumitomo Foundation (Japan)
Autophagy in fish liver .
研究業績
主要原著論文
1. Tapas Chakraborty Sipra Mohapatra, Michiya Matsuyama, Yoshitaka Nagahama, Kohei Ohta., Sex lethal gene manipulates gonadal development of medaka, Oryzias latipes through estrogenic interventions. International journal of molecular sciences., International journal of molecular sciences., 2022.10.
2. Tapas Chakraborty, Yume Yamamoto, Shoma Hanai, Mayumi Hirano, Sipra Mohapatra, Akihiko Yamaguchi, Tatsusuke Takeda, Michiya Matsuyama, Kohei Ohta. , Divulging the social sex change mechanism in a unique model system for studying the sexual plasticity of protogynous hermaphrodite fish, three bamboo leaf wrasse (Pseudolabrus sieboldi). , Frontiers in Marine Sciences, 2022.10.
3. Yoshitaka Nagahama, Tapas Chakraborty, Bindhu Paul-Prasanth, Kohei Ohta, and Masaru Nakamura, Sex determination, gonadal sex differentiation, and plasticity in vertebrate species, Physiological review, 2021.06, A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity..
4. Sipra Mohapatra, Tapas Chakraborty, Sonoko Shimizu, Kayoko Ohta, Yoshitaka Nagahama, Kohei Ohta , Estrogen and estrogen receptors chauffeur the sex-biased autophagic action in liver, Cell death and Differentiation, 10.1038/s41418-020-0567-3, 10.1038/s41418-020-0567-3, 2020.06, Autophagy, or cellular self-digestion, is an essential cellular process imperative for energy homeostasis, development, differentiation, and survival. However, the intrinsic factors that bring about the sex-biased differences in liver autophagy are still unknown. In this work, we found that autophagic genes variably expresses in the steroidogenic tissues, mostly abundant in liver, and is influenced by the individual’s sexuality. Starvation-induced autophagy in a time-dependent female-dominated manner, and upon starvation, a strong gender responsive circulating steroid-HK2 relation was observed, which highlighted the importance of estrogen in autophagy regulation. This was further confirmed by the enhanced or suppressed autophagy upon estrogen addition (male) or blockage (female), respectively. In addition, we found that estrogen proved to be the common denominator between stress management, glucose metabolism, and autophagic action in female fish. To understand further, we used estrogen receptor (ER)α- and ER-β2-knockout (KO) medaka and found ER-specific differences in sex-biased autophagy. Interestingly, starvation resulted in significantly elevated mTOR transcription (compared with control) in male ERα-KO fish while HK2 and ULK activation was greatly decreased in both KO fish in a female oriented fashion. Later, ChIP analysis confirmed that, NRF2, an upstream regulator of mTOR, only binds to ERα, while both ERα and ERβ2 are effectively pulled down the HK2 and LC3. FIHC data show that, in both ER-KO fish, LC3 nuclear-cytoplasmic transport and its associated pathways involving SIRT1 and DOR were greatly affected. Cumulatively, our data suggest that, ERα-KO strongly affected the early autophagic initiation and altered the LC3 nuclear-cytoplasmic translocation, thereby influencing the sex-biased final autophagosome formation in medaka. Thus, existence of steroid responsive autophagy regulatory-switches and sex-biased steroid/steroid receptor availability influences the gender-skewed autophagy. Expectedly, this study may furnish newer appreciation for gender-specific medicine research and therapeutics..
5. Tapas Chakraborty, Lin Yan Zhou, Aparna Chaudhari, Taisen Iguchi, Y. Nagahama, Dmy initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka (Oryzias latipes), Scientific reports, 10.1038/srep19480, 6, 2016.01, [URL], Despite identification of several sex-determining genes in non-mammalian vertebrates, their detailed molecular cascades of sex determination/differentiation are not known. Here, we used a novel RNAi to characterise the molecular mechanism of Dmy (the sex-determining gene of medaka)-mediated masculinity in XY fish. Dmy knockdown (Dmy-KD) suppressed male pathway (Gsdf, Sox9a2, etc.) and favoured female cascade (Rspo1, etc.) in embryonic XY gonads, resulting in a fertile male-to-female sex-reversal. Gsdf, Sox9a2, and Rspo1 directly interacted with Dmy, and co-injection of Gsdf and Sox9a2 re-established masculinity in XY-Dmy-KD transgenics, insinuating that Dmy initiates masculinity by stimulating and suppressing Gsdf/Sox9a2 and Rspo1 expression, respectively. Gonadal expression of Wt1a starts prior to Dmy and didn't change upon Dmy-KD. Furthermore, Wt1a stimulated the promoter activity of Dmy, suggesting Wt1a as a regulator of Dmy. These findings provide new insights into the role of vertebrate sex-determining genes associated with the molecular interplay between the male and female pathways..
6. Tapas Chakraborty, Sipra Mohapatra, Megumi Tobayama, Kayoko Ohta, Yong Woon Ryu, Yukinori Kazeto, Kohei Ohta, Linyan Zhou, Yoshitaka Nagahama, Takahiro Matsubara, Hatching enzymes disrupt aberrant gonadal degeneration by the autophagy/apoptosis cell fate decision, Scientific reports, 10.1038/s41598-017-03314-7, 7, 1, 2017.12, [URL], Environmental stressors, gonadal degenerative diseases and tumour development can significantly alter the oocyte physiology, and species fertility and fitness. To expand the molecular understanding about oocyte degradation, we isolated several spliced variants of Japanese anchovy hatching enzymes (AcHEs; ovastacin homologue) 1 and 2, and analysed their potential in oocyte sustenance. Particularly, AcHE1b, an ovary-specific, steroid-regulated, methylation-dependent, stress-responsive isoform, was neofunctionalized to regulate autophagic oocyte degeneration. AcHE1a and 2 triggered apoptotic degeneration in vitellogenic and mature oocytes, respectively. Progesterone, starvation, and high temperature elevated the total degenerating oocyte population and AcHE1b transcription by hyper-demethylation. Overexpression, knockdown and intracellular zinc ion chelation study confirmed the functional significance of AcHE1b in autophagy induction, possibly to mitigate the stress effects in fish, via ion-homeostasis. Our finding chronicles the importance of AcHEs in stress-influenced apoptosis/autophagy cell fate decision and may prove significant in reproductive failure assessments, gonadal health maintenance and ovarian degenerative disease therapy..
7. T. Chakraborty, S. Mohapatra, Lin Yan Zhou, K. Ohta, Takahiro Matsubara, Taisen Iguchi, Yoshitaka Nagahama, Estrogen Receptor β2 Oversees Germ Cell Maintenance and Gonadal Sex Differentiation in Medaka, Oryzias latipes, Stem Cell Reports, 10.1016/j.stemcr.2019.07.013, 13, 2, 419-433, 2019.08, [URL], In vertebrates, estrogen receptors are essential for estrogen-associated early gonadal sex development. Our previous studies revealed sexual dimorphic expression of estrogen receptor β2 (ERβ2) during embryogenesis of medaka, and here we investigated the functional importance of ERβ2 in female gonad development and maintenance using a transgenerational ERβ2-knockdown (ERβ2-KD) line and ERβ2-null mutants. We found that ERβ2 reduction favored male-biased gene transcription, suppressed female-responsive gene expression, and affected SDF1a and CXCR4b co-assisted chemotactic primordial germ cell (PGC) migration. Co-overexpression of SDF1a and CXXR4b restored the ERβ2-KD/KO associated PGC mismigration. Further analysis confirmed that curtailment of ERβ2 increased intracellular Ca<sup>2+</sup> concentration, disrupted intra- and extracellular calcium homeostasis, and instigated autophagic germ cell degradation and germ cell loss, which in some cases ultimately affected the XX female sexual development. This study is expected improve our understanding of germ cell maintenance and sex spectrum, and hence open new avenues for reproductive disorder management. In this article, Chakraborty et al. find that estrogen receptor β2 (ERβ2) plays multifaceted crucial roles in medaka gonadal development and sexuality. ERβ2 predominantly expresses in germ cells, influences the SDF1/CXCR4 chemotaxis, PGC migration, and death, and regulates germ cell proliferation and various sex-biased gene transcriptions that are essential for gonadal sex assignment and maintenance..
主要総説, 論評, 解説, 書評, 報告書等
1. Yoshitaka Nagahama, Tapas Chakraborty, Bindhu Paul-Prasanth, Kohei Ohta, and Masaru Nakamura, Sex determination, gonadal sex differentiation, and plasticity in vertebrate species, Physiological reviews, 2021.06.
主要学会発表等
1. Issei Yahiro, Tapas Chakraborty, Kohei Ohta, Michiya Matsuyama. , Can fish be artificially equipped with a secondary functional gonad?, 2022.07.
2. Takuma Ogawa, Hirofumi Ohga, Tapas Chakraborty, Kohei Ohta, Naoki Nagano, Atsushi Fujiwara, Tomoya Nagasako, Seiichi Uchida, Tetsushi Sakuma, Takashi Yamamoto, Michiya Matsuyama. , Genome-edited "modest mackerel" for aquaculture. , Responsible Aquaculture and Sustainable Fisheries Interact (RASHI).Tripura, India (2022) , 2022.12.
3. 小川拓摩・大賀浩史・Mohapatra Sipra・Chakraborty Tapas・太田耕平・長野直樹・長迫智也・内田誠一・藤原篤志・佐久間哲史・山本卓・松山倫也., ゲノム編集により作出された“おとなしいマサバ”の形質評価. , 日本水産増殖学会(JSAS), , 2022.11.
特許出願・取得
特許出願件数  1件
特許登録件数  0件
学会活動
所属学会名
Japanese Society of Fisheries Sciences
JAPANESE SOCIETY OF GENOME EDITING
ZOOLOGICAL SOCIETY OF JAPAN
International Society of Stem cell Research
International Society for Fish Endocrinology
学会大会・会議・シンポジウム等における役割
2022.12.07~2022.12.10, Responsible Aquaculture and sustainable fisheries interect (RASHI) -2022, Ogranizing Secretary (international).
2022.01.08~2022.01.08, JSFS branch meeting, 2023, Chairperson.
学会誌・雑誌・著書の編集への参加状況
2021.10, Experimental Endocrinology, 国際, Review editor.
2022.01, Frontiers in Molecular and Cellular Reproduction, 国際, Guest Associate editor.
2021.05~2023.04, Cells, 国際, Topic Editor.
学術論文等の審査
年度 外国語雑誌査読論文数 日本語雑誌査読論文数 国際会議録査読論文数 国内会議録査読論文数 合計
2023年度 50      54 
2022年度 15        15 
2021年度 25        25 
2017年度
2018年度 15  15 
2019年度 10  10 
その他の研究活動
海外渡航状況, 海外での教育研究歴
HCMR, Greece, 2023.06~2023.06.
CCMAR, Protugal, Portugal, 2022.07~2023.07.
NA, Portugal, 2014.06~2014.06.
NA, Sweden, 2016.06~2016.06.
NA, Canada, 2017.06~2017.06.
NA, Brazil, 2018.06~2018.06.
Central agricultural university, India, India, 2019.11~2019.11.
Southwest university, China, Central agricultural university, India, China, India, 2019.11~2019.12.
外国人研究者等の受入れ状況
2022.08~2022.10, 1ヶ月以上, Central Agricultural university, India, 外国政府・外国研究機関・国際機関.
受賞
Dr. Jalihal Endowment Award for the Best Dissertation (2006-2007), Central Institute of Fisheries Education (CIFE), Mumbai, India, 2007.08.
Best Publication of the Year (2014-2015), Central Institute of Fisheries Education (CIFE), Mumbai, India, 2015.06.
研究資金
科学研究費補助金の採択状況(文部科学省、日本学術振興会)
2022年度~2023年度, 挑戦的研究(萌芽), 連携, Construction of novel biomaterial production system using Japanese anchovy as an animal factory for medicine, healthcare, and sustainable food production.
2022年度~2025年度, 基盤研究(A), 連携, 空間情報と1細胞解析の統合による魚類生殖腺の性的可塑性を制御する分子機構の解明.
2022年度~2024年度, 基盤研究(C), 代表, 魚類の幹細胞培養系とin vitro ゲノム編集による生殖幹細胞の未分化維持機構.
2022年度~2026年度, 基盤研究(A), 連携, 空間情報と 1 細胞解析の 統合による魚類生殖腺の 性的可塑性を制御する分 子機構の解明.
2016年度~2018年度, 基盤研究(B), 連携, 魚類の生殖腺体細胞の性的可塑性を司るエピジェネティクスの分子基盤.
2019年度~2022年度, 特別推進研究, 連携, 1細胞解析系と性転換モデルによる魚類生殖腺の性的可塑性に関する分子機構の解明.
競争的資金(受託研究を含む)の採択状況
2020年度~2022年度, 戦略的創造研究推進事業 (文部科学省), 連携, 完全養殖マサバの生産拡 大と海外輸出のための戦 略的育種・生産基盤の開 発.
2020年度~2024年度, 戦略的創造研究推進事業 (文部科学省), 連携, 近縁種免疫不全成魚へのクロマグロ生殖幹細胞移植による早期配偶子産生.
2018年度~2020年度, Sumitomo Zaidan, 連携, オートファジーが魚類の受精におよぼす分子機構の解明 [Elucidation of molecular mechanism of autophagy association in fish fertility].
学内資金・基金等への採択状況
2020年度~2021年度, 令和2年度農学研究院若手教員支援事業(チャレンジ研究支援(Ⅰ型)), 代表, in vitro genome editing of fish stem cell.

九大関連コンテンツ

pure2017年10月2日から、「九州大学研究者情報」を補完するデータベースとして、Elsevier社の「Pure」による研究業績の公開を開始しました。